Metamath Proof Explorer


Theorem basellem9

Description: Lemma for basel . Since by basellem8 F is bounded by two expressions that tend to _pi ^ 2 / 6 , F must also go to _pi ^ 2 / 6 by the squeeze theorem climsqz . But the series F is exactly the partial sums of k ^ -u 2 , so it follows that this is also the value of the infinite sum sum_ k e. NN ( k ^ -u 2 ) . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses basel.g G=n12n+1
basel.f F=seq1+nn2
basel.h H=×π26×f×1fG
basel.j J=H×f×1+f×2×fG
basel.k K=H×f×1+fG
Assertion basellem9 kk2=π26

Proof

Step Hyp Ref Expression
1 basel.g G=n12n+1
2 basel.f F=seq1+nn2
3 basel.h H=×π26×f×1fG
4 basel.j J=H×f×1+f×2×fG
5 basel.k K=H×f×1+fG
6 nnuz =1
7 1zzd 1
8 oveq1 n=kn2=k2
9 eqid nn2=nn2
10 ovex k2V
11 8 9 10 fvmpt knn2k=k2
12 11 adantl knn2k=k2
13 nnre nn
14 nnne0 nn0
15 2z 2
16 znegcl 22
17 15 16 ax-mp 2
18 17 a1i n2
19 13 14 18 reexpclzd nn2
20 19 adantl nn2
21 20 9 fmptd nn2:
22 21 ffvelcdmda knn2k
23 12 22 eqeltrrd kk2
24 23 recnd kk2
25 6 7 22 serfre seq1+nn2:
26 2 feq1i F:seq1+nn2:
27 25 26 sylibr F:
28 27 ffvelcdmda nFn
29 28 recnd nFn
30 remulcl xyxy
31 30 adantl xyxy
32 ovex π26V
33 32 fconst ×π26:π26
34 pire π
35 34 resqcli π2
36 6re 6
37 6nn 6
38 37 nnne0i 60
39 35 36 38 redivcli π26
40 39 a1i π26
41 40 snssd π26
42 fss ×π26:π26π26×π26:
43 33 41 42 sylancr ×π26:
44 resubcl xyxy
45 44 adantl xyxy
46 1ex 1V
47 46 fconst ×1:1
48 1red 1
49 48 snssd 1
50 fss ×1:11×1:
51 47 49 50 sylancr ×1:
52 2nn 2
53 52 a1i 2
54 nnmulcl 2n2n
55 53 54 sylan n2n
56 55 peano2nnd n2n+1
57 56 nnrecred n12n+1
58 57 1 fmptd G:
59 nnex V
60 59 a1i V
61 inidm =
62 45 51 58 60 60 61 off ×1fG:
63 31 43 62 60 60 61 off ×π26×f×1fG:
64 3 feq1i H:×π26×f×1fG:
65 63 64 sylibr H:
66 readdcl xyx+y
67 66 adantl xyx+y
68 negex 2V
69 68 fconst ×2:2
70 17 zrei 2
71 70 a1i 2
72 71 snssd 2
73 fss ×2:22×2:
74 69 72 73 sylancr ×2:
75 31 74 58 60 60 61 off ×2×fG:
76 67 51 75 60 60 61 off ×1+f×2×fG:
77 31 65 76 60 60 61 off H×f×1+f×2×fG:
78 4 feq1i J:H×f×1+f×2×fG:
79 77 78 sylibr J:
80 79 ffvelcdmda nJn
81 80 recnd nJn
82 29 81 npcand nFn-Jn+Jn=Fn
83 82 mpteq2dva nFn-Jn+Jn=nFn
84 ovexd nFnJnV
85 27 feqmptd F=nFn
86 79 feqmptd J=nJn
87 60 28 80 85 86 offval2 FfJ=nFnJn
88 60 84 80 87 86 offval2 FfJ+fJ=nFn-Jn+Jn
89 83 88 85 3eqtr4d FfJ+fJ=F
90 67 51 58 60 60 61 off ×1+fG:
91 recn xx
92 recn yy
93 recn zz
94 subdi xyzxyz=xyxz
95 91 92 93 94 syl3an xyzxyz=xyxz
96 95 adantl xyzxyz=xyxz
97 60 65 90 76 96 caofdi H×f×1+fGf×1+f×2×fG=H×f×1+fGfH×f×1+f×2×fG
98 5 4 oveq12i KfJ=H×f×1+fGfH×f×1+f×2×fG
99 97 98 eqtr4di H×f×1+fGf×1+f×2×fG=KfJ
100 39 recni π26
101 6 eqimss2i 1
102 101 59 climconst2 π261×π26π26
103 100 7 102 sylancr ×π26π26
104 ovexd ×π26×f×1fGV
105 ax-resscn
106 fss ×1:×1:
107 51 105 106 sylancl ×1:
108 fss G:G:
109 58 105 108 sylancl G:
110 ofnegsub V×1:G:×1+f×1×fG=×1fG
111 59 107 109 110 mp3an2i ×1+f×1×fG=×1fG
112 neg1cn 1
113 1 112 basellem7 ×1+f×1×fG1
114 111 113 eqbrtrrdi ×1fG1
115 43 ffvelcdmda k×π26k
116 115 recnd k×π26k
117 62 ffvelcdmda k×1fGk
118 117 recnd k×1fGk
119 43 ffnd ×π26Fn
120 fnconstg 1×1Fn
121 7 120 syl ×1Fn
122 58 ffnd GFn
123 121 122 60 60 61 offn ×1fGFn
124 eqidd k×π26k=×π26k
125 eqidd k×1fGk=×1fGk
126 119 123 60 60 61 124 125 ofval k×π26×f×1fGk=×π26k×1fGk
127 6 7 103 104 114 116 118 126 climmul ×π26×f×1fGπ261
128 100 mulridi π261=π26
129 127 128 breqtrdi ×π26×f×1fGπ26
130 3 129 eqbrtrid Hπ26
131 ovexd H×f×1+fGf×1+f×2×fGV
132 3cn 3
133 101 59 climconst2 31×33
134 132 7 133 sylancr ×33
135 ovexd ×3×fGV
136 1 basellem6 G0
137 136 a1i G0
138 3ex 3V
139 138 fconst ×3:3
140 3re 3
141 140 a1i 3
142 141 snssd 3
143 fss ×3:33×3:
144 139 142 143 sylancr ×3:
145 144 ffvelcdmda k×3k
146 145 recnd k×3k
147 58 ffvelcdmda kGk
148 147 recnd kGk
149 144 ffnd ×3Fn
150 eqidd k×3k=×3k
151 eqidd kGk=Gk
152 149 122 60 60 61 150 151 ofval k×3×fGk=×3kGk
153 6 7 134 135 137 146 148 152 climmul ×3×fG30
154 132 mul01i 30=0
155 153 154 breqtrdi ×3×fG0
156 65 ffvelcdmda kHk
157 156 recnd kHk
158 31 144 58 60 60 61 off ×3×fG:
159 158 ffvelcdmda k×3×fGk
160 159 recnd k×3×fGk
161 65 ffnd HFn
162 45 90 76 60 60 61 off ×1+fGf×1+f×2×fG:
163 162 ffnd ×1+fGf×1+f×2×fGFn
164 eqidd kHk=Hk
165 148 mullidd k1Gk=Gk
166 2cn 2
167 mulneg1 2Gk-2Gk=2Gk
168 166 148 167 sylancr k-2Gk=2Gk
169 168 negeqd k-2Gk=2Gk
170 mulcl 2Gk2Gk
171 166 148 170 sylancr k2Gk
172 171 negnegd k2Gk=2Gk
173 169 172 eqtr2d k2Gk=-2Gk
174 165 173 oveq12d k1Gk+2Gk=Gk+-2Gk
175 remulcl 2Gk-2Gk
176 70 147 175 sylancr k-2Gk
177 176 recnd k-2Gk
178 148 177 negsubd kGk+-2Gk=Gk-2Gk
179 174 178 eqtrd k1Gk+2Gk=Gk-2Gk
180 df-3 3=2+1
181 ax-1cn 1
182 166 181 addcomi 2+1=1+2
183 180 182 eqtri 3=1+2
184 183 oveq1i 3Gk=1+2Gk
185 1cnd k1
186 166 a1i k2
187 185 186 148 adddird k1+2Gk=1Gk+2Gk
188 184 187 eqtrid k3Gk=1Gk+2Gk
189 185 148 177 pnpcand k1+Gk-1+-2Gk=Gk-2Gk
190 179 188 189 3eqtr4rd k1+Gk-1+-2Gk=3Gk
191 121 122 60 60 61 offn ×1+fGFn
192 17 a1i 2
193 fnconstg 2×2Fn
194 192 193 syl ×2Fn
195 194 122 60 60 61 offn ×2×fGFn
196 121 195 60 60 61 offn ×1+f×2×fGFn
197 60 48 122 151 ofc1 k×1+fGk=1+Gk
198 60 71 122 151 ofc1 k×2×fGk=-2Gk
199 60 48 195 198 ofc1 k×1+f×2×fGk=1+-2Gk
200 191 196 60 60 61 197 199 ofval k×1+fGf×1+f×2×fGk=1+Gk-1+-2Gk
201 60 141 122 151 ofc1 k×3×fGk=3Gk
202 190 200 201 3eqtr4d k×1+fGf×1+f×2×fGk=×3×fGk
203 161 163 60 60 61 164 202 ofval kH×f×1+fGf×1+f×2×fGk=Hk×3×fGk
204 6 7 130 131 155 157 160 203 climmul H×f×1+fGf×1+f×2×fGπ260
205 100 mul01i π260=0
206 204 205 breqtrdi H×f×1+fGf×1+f×2×fG0
207 99 206 eqbrtrrd KfJ0
208 ovexd FfJV
209 31 65 90 60 60 61 off H×f×1+fG:
210 5 feq1i K:H×f×1+fG:
211 209 210 sylibr K:
212 45 211 79 60 60 61 off KfJ:
213 212 ffvelcdmda kKfJk
214 45 27 79 60 60 61 off FfJ:
215 214 ffvelcdmda kFfJk
216 27 ffvelcdmda kFk
217 211 ffvelcdmda kKk
218 79 ffvelcdmda kJk
219 eqid 2k+1=2k+1
220 1 2 3 4 5 219 basellem8 kJkFkFkKk
221 220 adantl kJkFkFkKk
222 221 simprd kFkKk
223 216 217 218 222 lesub1dd kFkJkKkJk
224 27 ffnd FFn
225 79 ffnd JFn
226 eqidd kFk=Fk
227 eqidd kJk=Jk
228 224 225 60 60 61 226 227 ofval kFfJk=FkJk
229 211 ffnd KFn
230 eqidd kKk=Kk
231 229 225 60 60 61 230 227 ofval kKfJk=KkJk
232 223 228 231 3brtr4d kFfJkKfJk
233 221 simpld kJkFk
234 216 218 subge0d k0FkJkJkFk
235 233 234 mpbird k0FkJk
236 235 228 breqtrrd k0FfJk
237 6 7 207 208 213 215 232 236 climsqz2 FfJ0
238 ovexd FfJ+fJV
239 ovexd H×f×1+f×2×fGV
240 70 recni 2
241 1 240 basellem7 ×1+f×2×fG1
242 241 a1i ×1+f×2×fG1
243 76 ffvelcdmda k×1+f×2×fGk
244 243 recnd k×1+f×2×fGk
245 eqidd k×1+f×2×fGk=×1+f×2×fGk
246 161 196 60 60 61 164 245 ofval kH×f×1+f×2×fGk=Hk×1+f×2×fGk
247 6 7 130 239 242 157 244 246 climmul H×f×1+f×2×fGπ261
248 247 128 breqtrdi H×f×1+f×2×fGπ26
249 4 248 eqbrtrid Jπ26
250 215 recnd kFfJk
251 218 recnd kJk
252 214 ffnd FfJFn
253 eqidd kFfJk=FfJk
254 252 225 60 60 61 253 227 ofval kFfJ+fJk=FfJk+Jk
255 6 7 237 238 249 250 251 254 climadd FfJ+fJ0+π26
256 89 255 eqbrtrrd F0+π26
257 100 addlidi 0+π26=π26
258 256 2 257 3brtr3g seq1+nn2π26
259 6 7 12 24 258 isumclim kk2=π26
260 259 mptru kk2=π26