Metamath Proof Explorer


Theorem bpoly4

Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015)

Ref Expression
Assertion bpoly4 X4BernPolyX=X42X3+X2-130

Proof

Step Hyp Ref Expression
1 4nn0 40
2 bpolyval 40X4BernPolyX=X4k=041(4k)kBernPolyX4-k+1
3 1 2 mpan X4BernPolyX=X4k=041(4k)kBernPolyX4-k+1
4 4m1e3 41=3
5 df-3 3=2+1
6 4 5 eqtri 41=2+1
7 6 oveq2i 041=02+1
8 7 sumeq1i k=041(4k)kBernPolyX4-k+1=k=02+1(4k)kBernPolyX4-k+1
9 2eluzge0 20
10 9 a1i X20
11 elfzelz k02+1k
12 bccl 40k(4k)0
13 1 11 12 sylancr k02+1(4k)0
14 13 nn0cnd k02+1(4k)
15 14 adantl Xk02+1(4k)
16 elfznn0 k02+1k0
17 bpolycl k0XkBernPolyX
18 16 17 sylan k02+1XkBernPolyX
19 18 ancoms Xk02+1kBernPolyX
20 4re 4
21 20 a1i k02+14
22 11 zred k02+1k
23 21 22 resubcld k02+14k
24 peano2re 4k4-k+1
25 23 24 syl k02+14-k+1
26 25 recnd k02+14-k+1
27 26 adantl Xk02+14-k+1
28 1red k02+11
29 5 oveq2i 03=02+1
30 29 eleq2i k03k02+1
31 elfzelz k03k
32 31 zred k03k
33 3re 3
34 33 a1i k033
35 20 a1i k034
36 elfzle2 k03k3
37 3lt4 3<4
38 37 a1i k033<4
39 32 34 35 36 38 lelttrd k03k<4
40 30 39 sylbir k02+1k<4
41 22 21 posdifd k02+1k<40<4k
42 40 41 mpbid k02+10<4k
43 0lt1 0<1
44 43 a1i k02+10<1
45 23 28 42 44 addgt0d k02+10<4-k+1
46 45 gt0ne0d k02+14-k+10
47 46 adantl Xk02+14-k+10
48 19 27 47 divcld Xk02+1kBernPolyX4-k+1
49 15 48 mulcld Xk02+1(4k)kBernPolyX4-k+1
50 5 eqeq2i k=3k=2+1
51 oveq2 k=3(4k)=(43)
52 4bc3eq4 (43)=4
53 51 52 eqtrdi k=3(4k)=4
54 oveq1 k=3kBernPolyX=3BernPolyX
55 oveq2 k=34k=43
56 55 oveq1d k=34-k+1=4-3+1
57 4cn 4
58 3cn 3
59 ax-1cn 1
60 3p1e4 3+1=4
61 57 58 59 60 subaddrii 43=1
62 61 oveq1i 4-3+1=1+1
63 df-2 2=1+1
64 62 63 eqtr4i 4-3+1=2
65 56 64 eqtrdi k=34-k+1=2
66 54 65 oveq12d k=3kBernPolyX4-k+1=3BernPolyX2
67 53 66 oveq12d k=3(4k)kBernPolyX4-k+1=43BernPolyX2
68 50 67 sylbir k=2+1(4k)kBernPolyX4-k+1=43BernPolyX2
69 10 49 68 fsump1 Xk=02+1(4k)kBernPolyX4-k+1=k=02(4k)kBernPolyX4-k+1+43BernPolyX2
70 63 oveq2i 02=01+1
71 70 sumeq1i k=02(4k)kBernPolyX4-k+1=k=01+1(4k)kBernPolyX4-k+1
72 1eluzge0 10
73 72 a1i X10
74 fzssp1 01+101+1+1
75 63 oveq1i 2+1=1+1+1
76 75 oveq2i 02+1=01+1+1
77 74 76 sseqtrri 01+102+1
78 77 sseli k01+1k02+1
79 78 49 sylan2 Xk01+1(4k)kBernPolyX4-k+1
80 63 eqeq2i k=2k=1+1
81 oveq2 k=2(4k)=(42)
82 4bc2eq6 (42)=6
83 81 82 eqtrdi k=2(4k)=6
84 oveq1 k=2kBernPolyX=2BernPolyX
85 oveq2 k=24k=42
86 85 oveq1d k=24-k+1=4-2+1
87 2cn 2
88 2p2e4 2+2=4
89 57 87 87 88 subaddrii 42=2
90 89 oveq1i 4-2+1=2+1
91 90 5 eqtr4i 4-2+1=3
92 86 91 eqtrdi k=24-k+1=3
93 84 92 oveq12d k=2kBernPolyX4-k+1=2BernPolyX3
94 83 93 oveq12d k=2(4k)kBernPolyX4-k+1=62BernPolyX3
95 80 94 sylbir k=1+1(4k)kBernPolyX4-k+1=62BernPolyX3
96 73 79 95 fsump1 Xk=01+1(4k)kBernPolyX4-k+1=k=01(4k)kBernPolyX4-k+1+62BernPolyX3
97 0p1e1 0+1=1
98 97 oveq2i 00+1=01
99 98 sumeq1i k=00+1(4k)kBernPolyX4-k+1=k=01(4k)kBernPolyX4-k+1
100 0nn0 00
101 nn0uz 0=0
102 100 101 eleqtri 00
103 102 a1i X00
104 3nn 3
105 nnuz =1
106 104 105 eleqtri 31
107 fzss2 310103
108 106 107 ax-mp 0103
109 2p1e3 2+1=3
110 109 oveq2i 02+1=03
111 108 98 110 3sstr4i 00+102+1
112 111 sseli k00+1k02+1
113 112 49 sylan2 Xk00+1(4k)kBernPolyX4-k+1
114 97 eqeq2i k=0+1k=1
115 oveq2 k=1(4k)=(41)
116 bcn1 40(41)=4
117 1 116 ax-mp (41)=4
118 115 117 eqtrdi k=1(4k)=4
119 oveq1 k=1kBernPolyX=1BernPolyX
120 oveq2 k=14k=41
121 120 oveq1d k=14-k+1=4-1+1
122 4 oveq1i 4-1+1=3+1
123 df-4 4=3+1
124 122 123 eqtr4i 4-1+1=4
125 121 124 eqtrdi k=14-k+1=4
126 119 125 oveq12d k=1kBernPolyX4-k+1=1BernPolyX4
127 118 126 oveq12d k=1(4k)kBernPolyX4-k+1=41BernPolyX4
128 114 127 sylbi k=0+1(4k)kBernPolyX4-k+1=41BernPolyX4
129 103 113 128 fsump1 Xk=00+1(4k)kBernPolyX4-k+1=k=00(4k)kBernPolyX4-k+1+41BernPolyX4
130 0z 0
131 59 a1i X1
132 bpolycl 00X0BernPolyX
133 100 132 mpan X0BernPolyX
134 5cn 5
135 134 a1i X5
136 0re 0
137 5pos 0<5
138 136 137 gtneii 50
139 138 a1i X50
140 133 135 139 divcld X0BernPolyX5
141 131 140 mulcld X10BernPolyX5
142 oveq2 k=0(4k)=(40)
143 bcn0 40(40)=1
144 1 143 ax-mp (40)=1
145 142 144 eqtrdi k=0(4k)=1
146 oveq1 k=0kBernPolyX=0BernPolyX
147 oveq2 k=04k=40
148 147 oveq1d k=04-k+1=4-0+1
149 57 subid1i 40=4
150 149 oveq1i 4-0+1=4+1
151 4p1e5 4+1=5
152 150 151 eqtri 4-0+1=5
153 148 152 eqtrdi k=04-k+1=5
154 146 153 oveq12d k=0kBernPolyX4-k+1=0BernPolyX5
155 145 154 oveq12d k=0(4k)kBernPolyX4-k+1=10BernPolyX5
156 155 fsum1 010BernPolyX5k=00(4k)kBernPolyX4-k+1=10BernPolyX5
157 130 141 156 sylancr Xk=00(4k)kBernPolyX4-k+1=10BernPolyX5
158 bpoly0 X0BernPolyX=1
159 158 oveq1d X0BernPolyX5=15
160 159 oveq2d X10BernPolyX5=115
161 134 138 reccli 15
162 161 mullidi 115=15
163 160 162 eqtrdi X10BernPolyX5=15
164 157 163 eqtrd Xk=00(4k)kBernPolyX4-k+1=15
165 1nn0 10
166 bpolycl 10X1BernPolyX
167 165 166 mpan X1BernPolyX
168 nn0cn 404
169 1 168 mp1i X4
170 4ne0 40
171 170 a1i X40
172 167 169 171 divcan2d X41BernPolyX4=1BernPolyX
173 bpoly1 X1BernPolyX=X12
174 172 173 eqtrd X41BernPolyX4=X12
175 164 174 oveq12d Xk=00(4k)kBernPolyX4-k+1+41BernPolyX4=15+X-12
176 129 175 eqtrd Xk=00+1(4k)kBernPolyX4-k+1=15+X-12
177 99 176 eqtr3id Xk=01(4k)kBernPolyX4-k+1=15+X-12
178 6cn 6
179 178 a1i X6
180 2nn0 20
181 bpolycl 20X2BernPolyX
182 180 181 mpan X2BernPolyX
183 58 a1i X3
184 3ne0 30
185 184 a1i X30
186 179 182 183 185 div12d X62BernPolyX3=2BernPolyX63
187 3t2e6 32=6
188 178 58 87 184 divmuli 63=232=6
189 187 188 mpbir 63=2
190 189 oveq2i 2BernPolyX63=2BernPolyX2
191 87 a1i X2
192 182 191 mulcomd X2BernPolyX2=22BernPolyX
193 bpoly2 X2BernPolyX=X2-X+16
194 193 oveq2d X22BernPolyX=2X2-X+16
195 192 194 eqtrd X2BernPolyX2=2X2-X+16
196 190 195 eqtrid X2BernPolyX63=2X2-X+16
197 186 196 eqtrd X62BernPolyX3=2X2-X+16
198 177 197 oveq12d Xk=01(4k)kBernPolyX4-k+1+62BernPolyX3=15+X12+2X2-X+16
199 96 198 eqtrd Xk=01+1(4k)kBernPolyX4-k+1=15+X12+2X2-X+16
200 71 199 eqtrid Xk=02(4k)kBernPolyX4-k+1=15+X12+2X2-X+16
201 3nn0 30
202 bpolycl 30X3BernPolyX
203 201 202 mpan X3BernPolyX
204 2ne0 20
205 204 a1i X20
206 169 203 191 205 div12d X43BernPolyX2=3BernPolyX42
207 4d2e2 42=2
208 207 oveq2i 3BernPolyX42=3BernPolyX2
209 203 191 mulcomd X3BernPolyX2=23BernPolyX
210 bpoly3 X3BernPolyX=X3-32X2+12X
211 210 oveq2d X23BernPolyX=2X3-32X2+12X
212 209 211 eqtrd X3BernPolyX2=2X3-32X2+12X
213 208 212 eqtrid X3BernPolyX42=2X3-32X2+12X
214 206 213 eqtrd X43BernPolyX2=2X3-32X2+12X
215 200 214 oveq12d Xk=02(4k)kBernPolyX4-k+1+43BernPolyX2=15+X-12+2X2-X+16+2X3-32X2+12X
216 69 215 eqtrd Xk=02+1(4k)kBernPolyX4-k+1=15+X-12+2X2-X+16+2X3-32X2+12X
217 8 216 eqtrid Xk=041(4k)kBernPolyX4-k+1=15+X-12+2X2-X+16+2X3-32X2+12X
218 217 oveq2d XX4k=041(4k)kBernPolyX4-k+1=X415+X-12+2X2-X+16+2X3-32X2+12X
219 expcl X40X4
220 1 219 mpan2 XX4
221 expcl X30X3
222 201 221 mpan2 XX3
223 191 222 mulcld X2X3
224 sqcl XX2
225 201 100 deccl 300
226 225 nn0cni 30
227 dfdec10 30=103+0
228 10re 10
229 228 recni 10
230 229 58 mulcli 103
231 230 addridi 103+0=103
232 227 231 eqtri 30=103
233 10pos 0<10
234 136 233 gtneii 100
235 229 58 234 184 mulne0i 1030
236 232 235 eqnetri 300
237 226 236 reccli 130
238 237 a1i X130
239 224 238 subcld XX2130
240 220 223 239 subsubd XX42X3X2130=X42X3+X2-130
241 161 a1i X15
242 id XX
243 87 204 reccli 12
244 243 a1i X12
245 242 244 subcld XX12
246 241 245 addcld X15+X-12
247 224 242 subcld XX2X
248 6pos 0<6
249 136 248 gtneii 60
250 178 249 reccli 16
251 250 a1i X16
252 247 251 addcld XX2-X+16
253 191 252 mulcld X2X2-X+16
254 246 253 addcld X15+X12+2X2-X+16
255 58 87 204 divcli 32
256 255 a1i X32
257 256 224 mulcld X32X2
258 222 257 subcld XX332X2
259 244 242 mulcld X12X
260 258 259 addcld XX3-32X2+12X
261 191 260 mulcld X2X3-32X2+12X
262 254 261 addcomd X15+X-12+2X2-X+16+2X3-32X2+12X=2X3-32X2+12X+15+X-12+2X2-X+16
263 191 258 259 adddid X2X3-32X2+12X=2X332X2+212X
264 191 222 257 subdid X2X332X2=2X3232X2
265 87 204 recidi 212=1
266 265 oveq1i 212X=1X
267 191 244 242 mulassd X212X=212X
268 mullid X1X=X
269 266 267 268 3eqtr3a X212X=X
270 264 269 oveq12d X2X332X2+212X=2X3-232X2+X
271 263 270 eqtrd X2X3-32X2+12X=2X3-232X2+X
272 271 oveq1d X2X3-32X2+12X+15+X-12+2X2-X+16=2X3232X2+X+15+X-12+2X2-X+16
273 191 257 mulcld X232X2
274 223 273 subcld X2X3232X2
275 274 242 254 addassd X2X3232X2+X+15+X-12+2X2-X+16=2X3232X2+X+15+X12+2X2-X+16
276 242 254 addcld XX+15+X-12+2X2-X+16
277 223 273 276 subsubd X2X3232X2X+15+X-12+2X2-X+16=2X3232X2+X+15+X12+2X2-X+16
278 191 256 224 mulassd X232X2=232X2
279 58 87 204 divcan2i 232=3
280 279 oveq1i 232X2=3X2
281 278 280 eqtr3di X232X2=3X2
282 281 oveq1d X232X2X+15+X-12+2X2-X+16=3X2X+15+X-12+2X2-X+16
283 242 246 253 add12d XX+15+X-12+2X2-X+16=15+X12+X+2X2-X+16
284 191 247 251 adddid X2X2-X+16=2X2X+216
285 191 224 242 subdid X2X2X=2X22X
286 187 oveq2i 232=26
287 58 184 reccli 13
288 58 87 287 mul32i 3213=3132
289 58 184 recidi 313=1
290 289 oveq1i 3132=12
291 87 mullidi 12=2
292 290 291 eqtri 3132=2
293 288 292 eqtri 3213=2
294 187 178 eqeltri 32
295 187 249 eqnetri 320
296 87 294 287 295 divmuli 232=133213=2
297 293 296 mpbir 232=13
298 87 178 249 divreci 26=216
299 286 297 298 3eqtr3ri 216=13
300 299 a1i X216=13
301 285 300 oveq12d X2X2X+216=2X2-2X+13
302 284 301 eqtrd X2X2-X+16=2X2-2X+13
303 302 oveq2d XX+2X2-X+16=X+2X22X+13
304 191 224 mulcld X2X2
305 191 242 mulcld X2X
306 304 305 subcld X2X22X
307 287 a1i X13
308 242 306 307 addassd XX+2X22X+13=X+2X22X+13
309 242 304 305 addsub12d XX+2X2-2X=2X2+X-2X
310 309 oveq1d XX+2X22X+13=2X2+X2X+13
311 303 308 310 3eqtr2d XX+2X2-X+16=2X2+X2X+13
312 311 oveq2d X15+X12+X+2X2-X+16=15+X12+2X2+X-2X+13
313 283 312 eqtrd XX+15+X-12+2X2-X+16=15+X12+2X2+X-2X+13
314 313 oveq2d X3X2X+15+X-12+2X2-X+16=3X215+X12+2X2+X-2X+13
315 242 305 subcld XX2X
316 304 315 addcld X2X2+X-2X
317 241 245 316 307 add4d X15+X12+2X2+X-2X+13=15+2X2+X-2X+X12+13
318 241 304 315 add12d X15+2X2+X2X=2X2+15+X2X
319 318 oveq1d X15+2X2+X-2X+X12+13=2X2+15+X-2X+X12+13
320 241 315 addcld X15+X-2X
321 245 307 addcld XX-12+13
322 304 320 321 addassd X2X2+15+X-2X+X12+13=2X2+15+X-2X+X-12+13
323 317 319 322 3eqtrd X15+X12+2X2+X-2X+13=2X2+15+X-2X+X-12+13
324 323 oveq2d X3X215+X12+2X2+X-2X+13=3X22X2+15+X-2X+X-12+13
325 183 224 mulcld X3X2
326 320 321 addcld X15+X2X+X12+13
327 325 304 326 subsub4d X3X2-2X2-15+X2X+X12+13=3X22X2+15+X-2X+X-12+13
328 58 87 59 109 subaddrii 32=1
329 328 oveq1i 32X2=1X2
330 183 191 224 subdird X32X2=3X22X2
331 224 mullidd X1X2=X2
332 329 330 331 3eqtr3a X3X22X2=X2
333 241 305 242 subsubd X152XX=15-2X+X
334 2txmxeqx X2XX=X
335 334 oveq2d X152XX=15X
336 241 305 242 subadd23d X15-2X+X=15+X-2X
337 333 335 336 3eqtr3d X15X=15+X-2X
338 242 244 307 subsubd XX1213=X-12+13
339 337 338 oveq12d X15X+X-1213=15+X2X+X12+13
340 243 287 subcli 1213
341 340 a1i X1213
342 241 242 341 npncand X15X+X-1213=151213
343 halfthird 1213=16
344 343 oveq2i 151213=1516
345 5recm6rec 1516=130
346 344 345 eqtri 151213=130
347 342 346 eqtrdi X15X+X-1213=130
348 339 347 eqtr3d X15+X2X+X12+13=130
349 332 348 oveq12d X3X2-2X2-15+X2X+X12+13=X2130
350 324 327 349 3eqtr2d X3X215+X12+2X2+X-2X+13=X2130
351 282 314 350 3eqtrd X232X2X+15+X-12+2X2-X+16=X2130
352 351 oveq2d X2X3232X2X+15+X-12+2X2-X+16=2X3X2130
353 275 277 352 3eqtr2d X2X3232X2+X+15+X-12+2X2-X+16=2X3X2130
354 262 272 353 3eqtrd X15+X-12+2X2-X+16+2X3-32X2+12X=2X3X2130
355 354 oveq2d XX415+X-12+2X2-X+16+2X3-32X2+12X=X42X3X2130
356 220 223 subcld XX42X3
357 356 224 238 addsubassd XX42X3+X2-130=X42X3+X2-130
358 240 355 357 3eqtr4d XX415+X-12+2X2-X+16+2X3-32X2+12X=X42X3+X2-130
359 3 218 358 3eqtrd X4BernPolyX=X42X3+X2-130