Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Bernoulli polynomials and sums of k-th powers
bpoly4
Next ⟩
fsumcube
Metamath Proof Explorer
Ascii
Unicode
Theorem
bpoly4
Description:
The Bernoulli polynomials at four.
(Contributed by
Scott Fenton
, 8-Jul-2015)
Ref
Expression
Assertion
bpoly4
⊢
X
∈
ℂ
→
4
BernPoly
X
=
X
4
−
2
X
3
+
X
2
-
1
30
Proof
Step
Hyp
Ref
Expression
1
4nn0
⊢
4
∈
ℕ
0
2
bpolyval
⊢
4
∈
ℕ
0
∧
X
∈
ℂ
→
4
BernPoly
X
=
X
4
−
∑
k
=
0
4
−
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
3
1
2
mpan
⊢
X
∈
ℂ
→
4
BernPoly
X
=
X
4
−
∑
k
=
0
4
−
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
4
4m1e3
⊢
4
−
1
=
3
5
df-3
⊢
3
=
2
+
1
6
4
5
eqtri
⊢
4
−
1
=
2
+
1
7
6
oveq2i
⊢
0
…
4
−
1
=
0
…
2
+
1
8
7
sumeq1i
⊢
∑
k
=
0
4
−
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
∑
k
=
0
2
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
9
2eluzge0
⊢
2
∈
ℤ
≥
0
10
9
a1i
⊢
X
∈
ℂ
→
2
∈
ℤ
≥
0
11
elfzelz
⊢
k
∈
0
…
2
+
1
→
k
∈
ℤ
12
bccl
⊢
4
∈
ℕ
0
∧
k
∈
ℤ
→
(
4
k
)
∈
ℕ
0
13
1
11
12
sylancr
⊢
k
∈
0
…
2
+
1
→
(
4
k
)
∈
ℕ
0
14
13
nn0cnd
⊢
k
∈
0
…
2
+
1
→
(
4
k
)
∈
ℂ
15
14
adantl
⊢
X
∈
ℂ
∧
k
∈
0
…
2
+
1
→
(
4
k
)
∈
ℂ
16
elfznn0
⊢
k
∈
0
…
2
+
1
→
k
∈
ℕ
0
17
bpolycl
⊢
k
∈
ℕ
0
∧
X
∈
ℂ
→
k
BernPoly
X
∈
ℂ
18
16
17
sylan
⊢
k
∈
0
…
2
+
1
∧
X
∈
ℂ
→
k
BernPoly
X
∈
ℂ
19
18
ancoms
⊢
X
∈
ℂ
∧
k
∈
0
…
2
+
1
→
k
BernPoly
X
∈
ℂ
20
4re
⊢
4
∈
ℝ
21
20
a1i
⊢
k
∈
0
…
2
+
1
→
4
∈
ℝ
22
11
zred
⊢
k
∈
0
…
2
+
1
→
k
∈
ℝ
23
21
22
resubcld
⊢
k
∈
0
…
2
+
1
→
4
−
k
∈
ℝ
24
peano2re
⊢
4
−
k
∈
ℝ
→
4
-
k
+
1
∈
ℝ
25
23
24
syl
⊢
k
∈
0
…
2
+
1
→
4
-
k
+
1
∈
ℝ
26
25
recnd
⊢
k
∈
0
…
2
+
1
→
4
-
k
+
1
∈
ℂ
27
26
adantl
⊢
X
∈
ℂ
∧
k
∈
0
…
2
+
1
→
4
-
k
+
1
∈
ℂ
28
1red
⊢
k
∈
0
…
2
+
1
→
1
∈
ℝ
29
5
oveq2i
⊢
0
…
3
=
0
…
2
+
1
30
29
eleq2i
⊢
k
∈
0
…
3
↔
k
∈
0
…
2
+
1
31
elfzelz
⊢
k
∈
0
…
3
→
k
∈
ℤ
32
31
zred
⊢
k
∈
0
…
3
→
k
∈
ℝ
33
3re
⊢
3
∈
ℝ
34
33
a1i
⊢
k
∈
0
…
3
→
3
∈
ℝ
35
20
a1i
⊢
k
∈
0
…
3
→
4
∈
ℝ
36
elfzle2
⊢
k
∈
0
…
3
→
k
≤
3
37
3lt4
⊢
3
<
4
38
37
a1i
⊢
k
∈
0
…
3
→
3
<
4
39
32
34
35
36
38
lelttrd
⊢
k
∈
0
…
3
→
k
<
4
40
30
39
sylbir
⊢
k
∈
0
…
2
+
1
→
k
<
4
41
22
21
posdifd
⊢
k
∈
0
…
2
+
1
→
k
<
4
↔
0
<
4
−
k
42
40
41
mpbid
⊢
k
∈
0
…
2
+
1
→
0
<
4
−
k
43
0lt1
⊢
0
<
1
44
43
a1i
⊢
k
∈
0
…
2
+
1
→
0
<
1
45
23
28
42
44
addgt0d
⊢
k
∈
0
…
2
+
1
→
0
<
4
-
k
+
1
46
45
gt0ne0d
⊢
k
∈
0
…
2
+
1
→
4
-
k
+
1
≠
0
47
46
adantl
⊢
X
∈
ℂ
∧
k
∈
0
…
2
+
1
→
4
-
k
+
1
≠
0
48
19
27
47
divcld
⊢
X
∈
ℂ
∧
k
∈
0
…
2
+
1
→
k
BernPoly
X
4
-
k
+
1
∈
ℂ
49
15
48
mulcld
⊢
X
∈
ℂ
∧
k
∈
0
…
2
+
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
∈
ℂ
50
5
eqeq2i
⊢
k
=
3
↔
k
=
2
+
1
51
oveq2
⊢
k
=
3
→
(
4
k
)
=
(
4
3
)
52
4bc3eq4
⊢
(
4
3
)
=
4
53
51
52
eqtrdi
⊢
k
=
3
→
(
4
k
)
=
4
54
oveq1
⊢
k
=
3
→
k
BernPoly
X
=
3
BernPoly
X
55
oveq2
⊢
k
=
3
→
4
−
k
=
4
−
3
56
55
oveq1d
⊢
k
=
3
→
4
-
k
+
1
=
4
-
3
+
1
57
4cn
⊢
4
∈
ℂ
58
3cn
⊢
3
∈
ℂ
59
ax-1cn
⊢
1
∈
ℂ
60
3p1e4
⊢
3
+
1
=
4
61
57
58
59
60
subaddrii
⊢
4
−
3
=
1
62
61
oveq1i
⊢
4
-
3
+
1
=
1
+
1
63
df-2
⊢
2
=
1
+
1
64
62
63
eqtr4i
⊢
4
-
3
+
1
=
2
65
56
64
eqtrdi
⊢
k
=
3
→
4
-
k
+
1
=
2
66
54
65
oveq12d
⊢
k
=
3
→
k
BernPoly
X
4
-
k
+
1
=
3
BernPoly
X
2
67
53
66
oveq12d
⊢
k
=
3
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
4
3
BernPoly
X
2
68
50
67
sylbir
⊢
k
=
2
+
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
4
3
BernPoly
X
2
69
10
49
68
fsump1
⊢
X
∈
ℂ
→
∑
k
=
0
2
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
∑
k
=
0
2
(
4
k
)
k
BernPoly
X
4
-
k
+
1
+
4
3
BernPoly
X
2
70
63
oveq2i
⊢
0
…
2
=
0
…
1
+
1
71
70
sumeq1i
⊢
∑
k
=
0
2
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
∑
k
=
0
1
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
72
1eluzge0
⊢
1
∈
ℤ
≥
0
73
72
a1i
⊢
X
∈
ℂ
→
1
∈
ℤ
≥
0
74
fzssp1
⊢
0
…
1
+
1
⊆
0
…
1
+
1
+
1
75
63
oveq1i
⊢
2
+
1
=
1
+
1
+
1
76
75
oveq2i
⊢
0
…
2
+
1
=
0
…
1
+
1
+
1
77
74
76
sseqtrri
⊢
0
…
1
+
1
⊆
0
…
2
+
1
78
77
sseli
⊢
k
∈
0
…
1
+
1
→
k
∈
0
…
2
+
1
79
78
49
sylan2
⊢
X
∈
ℂ
∧
k
∈
0
…
1
+
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
∈
ℂ
80
63
eqeq2i
⊢
k
=
2
↔
k
=
1
+
1
81
oveq2
⊢
k
=
2
→
(
4
k
)
=
(
4
2
)
82
4bc2eq6
⊢
(
4
2
)
=
6
83
81
82
eqtrdi
⊢
k
=
2
→
(
4
k
)
=
6
84
oveq1
⊢
k
=
2
→
k
BernPoly
X
=
2
BernPoly
X
85
oveq2
⊢
k
=
2
→
4
−
k
=
4
−
2
86
85
oveq1d
⊢
k
=
2
→
4
-
k
+
1
=
4
-
2
+
1
87
2cn
⊢
2
∈
ℂ
88
2p2e4
⊢
2
+
2
=
4
89
57
87
87
88
subaddrii
⊢
4
−
2
=
2
90
89
oveq1i
⊢
4
-
2
+
1
=
2
+
1
91
90
5
eqtr4i
⊢
4
-
2
+
1
=
3
92
86
91
eqtrdi
⊢
k
=
2
→
4
-
k
+
1
=
3
93
84
92
oveq12d
⊢
k
=
2
→
k
BernPoly
X
4
-
k
+
1
=
2
BernPoly
X
3
94
83
93
oveq12d
⊢
k
=
2
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
6
2
BernPoly
X
3
95
80
94
sylbir
⊢
k
=
1
+
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
6
2
BernPoly
X
3
96
73
79
95
fsump1
⊢
X
∈
ℂ
→
∑
k
=
0
1
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
∑
k
=
0
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
+
6
2
BernPoly
X
3
97
0p1e1
⊢
0
+
1
=
1
98
97
oveq2i
⊢
0
…
0
+
1
=
0
…
1
99
98
sumeq1i
⊢
∑
k
=
0
0
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
∑
k
=
0
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
100
0nn0
⊢
0
∈
ℕ
0
101
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
102
100
101
eleqtri
⊢
0
∈
ℤ
≥
0
103
102
a1i
⊢
X
∈
ℂ
→
0
∈
ℤ
≥
0
104
3nn
⊢
3
∈
ℕ
105
nnuz
⊢
ℕ
=
ℤ
≥
1
106
104
105
eleqtri
⊢
3
∈
ℤ
≥
1
107
fzss2
⊢
3
∈
ℤ
≥
1
→
0
…
1
⊆
0
…
3
108
106
107
ax-mp
⊢
0
…
1
⊆
0
…
3
109
2p1e3
⊢
2
+
1
=
3
110
109
oveq2i
⊢
0
…
2
+
1
=
0
…
3
111
108
98
110
3sstr4i
⊢
0
…
0
+
1
⊆
0
…
2
+
1
112
111
sseli
⊢
k
∈
0
…
0
+
1
→
k
∈
0
…
2
+
1
113
112
49
sylan2
⊢
X
∈
ℂ
∧
k
∈
0
…
0
+
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
∈
ℂ
114
97
eqeq2i
⊢
k
=
0
+
1
↔
k
=
1
115
oveq2
⊢
k
=
1
→
(
4
k
)
=
(
4
1
)
116
bcn1
⊢
4
∈
ℕ
0
→
(
4
1
)
=
4
117
1
116
ax-mp
⊢
(
4
1
)
=
4
118
115
117
eqtrdi
⊢
k
=
1
→
(
4
k
)
=
4
119
oveq1
⊢
k
=
1
→
k
BernPoly
X
=
1
BernPoly
X
120
oveq2
⊢
k
=
1
→
4
−
k
=
4
−
1
121
120
oveq1d
⊢
k
=
1
→
4
-
k
+
1
=
4
-
1
+
1
122
4
oveq1i
⊢
4
-
1
+
1
=
3
+
1
123
df-4
⊢
4
=
3
+
1
124
122
123
eqtr4i
⊢
4
-
1
+
1
=
4
125
121
124
eqtrdi
⊢
k
=
1
→
4
-
k
+
1
=
4
126
119
125
oveq12d
⊢
k
=
1
→
k
BernPoly
X
4
-
k
+
1
=
1
BernPoly
X
4
127
118
126
oveq12d
⊢
k
=
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
4
1
BernPoly
X
4
128
114
127
sylbi
⊢
k
=
0
+
1
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
4
1
BernPoly
X
4
129
103
113
128
fsump1
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
∑
k
=
0
0
(
4
k
)
k
BernPoly
X
4
-
k
+
1
+
4
1
BernPoly
X
4
130
0z
⊢
0
∈
ℤ
131
59
a1i
⊢
X
∈
ℂ
→
1
∈
ℂ
132
bpolycl
⊢
0
∈
ℕ
0
∧
X
∈
ℂ
→
0
BernPoly
X
∈
ℂ
133
100
132
mpan
⊢
X
∈
ℂ
→
0
BernPoly
X
∈
ℂ
134
5cn
⊢
5
∈
ℂ
135
134
a1i
⊢
X
∈
ℂ
→
5
∈
ℂ
136
0re
⊢
0
∈
ℝ
137
5pos
⊢
0
<
5
138
136
137
gtneii
⊢
5
≠
0
139
138
a1i
⊢
X
∈
ℂ
→
5
≠
0
140
133
135
139
divcld
⊢
X
∈
ℂ
→
0
BernPoly
X
5
∈
ℂ
141
131
140
mulcld
⊢
X
∈
ℂ
→
1
0
BernPoly
X
5
∈
ℂ
142
oveq2
⊢
k
=
0
→
(
4
k
)
=
(
4
0
)
143
bcn0
⊢
4
∈
ℕ
0
→
(
4
0
)
=
1
144
1
143
ax-mp
⊢
(
4
0
)
=
1
145
142
144
eqtrdi
⊢
k
=
0
→
(
4
k
)
=
1
146
oveq1
⊢
k
=
0
→
k
BernPoly
X
=
0
BernPoly
X
147
oveq2
⊢
k
=
0
→
4
−
k
=
4
−
0
148
147
oveq1d
⊢
k
=
0
→
4
-
k
+
1
=
4
-
0
+
1
149
57
subid1i
⊢
4
−
0
=
4
150
149
oveq1i
⊢
4
-
0
+
1
=
4
+
1
151
4p1e5
⊢
4
+
1
=
5
152
150
151
eqtri
⊢
4
-
0
+
1
=
5
153
148
152
eqtrdi
⊢
k
=
0
→
4
-
k
+
1
=
5
154
146
153
oveq12d
⊢
k
=
0
→
k
BernPoly
X
4
-
k
+
1
=
0
BernPoly
X
5
155
145
154
oveq12d
⊢
k
=
0
→
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
0
BernPoly
X
5
156
155
fsum1
⊢
0
∈
ℤ
∧
1
0
BernPoly
X
5
∈
ℂ
→
∑
k
=
0
0
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
0
BernPoly
X
5
157
130
141
156
sylancr
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
0
BernPoly
X
5
158
bpoly0
⊢
X
∈
ℂ
→
0
BernPoly
X
=
1
159
158
oveq1d
⊢
X
∈
ℂ
→
0
BernPoly
X
5
=
1
5
160
159
oveq2d
⊢
X
∈
ℂ
→
1
0
BernPoly
X
5
=
1
1
5
161
134
138
reccli
⊢
1
5
∈
ℂ
162
161
mullidi
⊢
1
1
5
=
1
5
163
160
162
eqtrdi
⊢
X
∈
ℂ
→
1
0
BernPoly
X
5
=
1
5
164
157
163
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
165
1nn0
⊢
1
∈
ℕ
0
166
bpolycl
⊢
1
∈
ℕ
0
∧
X
∈
ℂ
→
1
BernPoly
X
∈
ℂ
167
165
166
mpan
⊢
X
∈
ℂ
→
1
BernPoly
X
∈
ℂ
168
nn0cn
⊢
4
∈
ℕ
0
→
4
∈
ℂ
169
1
168
mp1i
⊢
X
∈
ℂ
→
4
∈
ℂ
170
4ne0
⊢
4
≠
0
171
170
a1i
⊢
X
∈
ℂ
→
4
≠
0
172
167
169
171
divcan2d
⊢
X
∈
ℂ
→
4
1
BernPoly
X
4
=
1
BernPoly
X
173
bpoly1
⊢
X
∈
ℂ
→
1
BernPoly
X
=
X
−
1
2
174
172
173
eqtrd
⊢
X
∈
ℂ
→
4
1
BernPoly
X
4
=
X
−
1
2
175
164
174
oveq12d
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
4
k
)
k
BernPoly
X
4
-
k
+
1
+
4
1
BernPoly
X
4
=
1
5
+
X
-
1
2
176
129
175
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
+
X
-
1
2
177
99
176
eqtr3id
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
+
X
-
1
2
178
6cn
⊢
6
∈
ℂ
179
178
a1i
⊢
X
∈
ℂ
→
6
∈
ℂ
180
2nn0
⊢
2
∈
ℕ
0
181
bpolycl
⊢
2
∈
ℕ
0
∧
X
∈
ℂ
→
2
BernPoly
X
∈
ℂ
182
180
181
mpan
⊢
X
∈
ℂ
→
2
BernPoly
X
∈
ℂ
183
58
a1i
⊢
X
∈
ℂ
→
3
∈
ℂ
184
3ne0
⊢
3
≠
0
185
184
a1i
⊢
X
∈
ℂ
→
3
≠
0
186
179
182
183
185
div12d
⊢
X
∈
ℂ
→
6
2
BernPoly
X
3
=
2
BernPoly
X
6
3
187
3t2e6
⊢
3
⋅
2
=
6
188
178
58
87
184
divmuli
⊢
6
3
=
2
↔
3
⋅
2
=
6
189
187
188
mpbir
⊢
6
3
=
2
190
189
oveq2i
⊢
2
BernPoly
X
6
3
=
2
BernPoly
X
⋅
2
191
87
a1i
⊢
X
∈
ℂ
→
2
∈
ℂ
192
182
191
mulcomd
⊢
X
∈
ℂ
→
2
BernPoly
X
⋅
2
=
2
2
BernPoly
X
193
bpoly2
⊢
X
∈
ℂ
→
2
BernPoly
X
=
X
2
-
X
+
1
6
194
193
oveq2d
⊢
X
∈
ℂ
→
2
2
BernPoly
X
=
2
X
2
-
X
+
1
6
195
192
194
eqtrd
⊢
X
∈
ℂ
→
2
BernPoly
X
⋅
2
=
2
X
2
-
X
+
1
6
196
190
195
eqtrid
⊢
X
∈
ℂ
→
2
BernPoly
X
6
3
=
2
X
2
-
X
+
1
6
197
186
196
eqtrd
⊢
X
∈
ℂ
→
6
2
BernPoly
X
3
=
2
X
2
-
X
+
1
6
198
177
197
oveq12d
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
+
6
2
BernPoly
X
3
=
1
5
+
X
−
1
2
+
2
X
2
-
X
+
1
6
199
96
198
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
1
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
+
X
−
1
2
+
2
X
2
-
X
+
1
6
200
71
199
eqtrid
⊢
X
∈
ℂ
→
∑
k
=
0
2
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
+
X
−
1
2
+
2
X
2
-
X
+
1
6
201
3nn0
⊢
3
∈
ℕ
0
202
bpolycl
⊢
3
∈
ℕ
0
∧
X
∈
ℂ
→
3
BernPoly
X
∈
ℂ
203
201
202
mpan
⊢
X
∈
ℂ
→
3
BernPoly
X
∈
ℂ
204
2ne0
⊢
2
≠
0
205
204
a1i
⊢
X
∈
ℂ
→
2
≠
0
206
169
203
191
205
div12d
⊢
X
∈
ℂ
→
4
3
BernPoly
X
2
=
3
BernPoly
X
4
2
207
4d2e2
⊢
4
2
=
2
208
207
oveq2i
⊢
3
BernPoly
X
4
2
=
3
BernPoly
X
⋅
2
209
203
191
mulcomd
⊢
X
∈
ℂ
→
3
BernPoly
X
⋅
2
=
2
3
BernPoly
X
210
bpoly3
⊢
X
∈
ℂ
→
3
BernPoly
X
=
X
3
-
3
2
X
2
+
1
2
X
211
210
oveq2d
⊢
X
∈
ℂ
→
2
3
BernPoly
X
=
2
X
3
-
3
2
X
2
+
1
2
X
212
209
211
eqtrd
⊢
X
∈
ℂ
→
3
BernPoly
X
⋅
2
=
2
X
3
-
3
2
X
2
+
1
2
X
213
208
212
eqtrid
⊢
X
∈
ℂ
→
3
BernPoly
X
4
2
=
2
X
3
-
3
2
X
2
+
1
2
X
214
206
213
eqtrd
⊢
X
∈
ℂ
→
4
3
BernPoly
X
2
=
2
X
3
-
3
2
X
2
+
1
2
X
215
200
214
oveq12d
⊢
X
∈
ℂ
→
∑
k
=
0
2
(
4
k
)
k
BernPoly
X
4
-
k
+
1
+
4
3
BernPoly
X
2
=
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
216
69
215
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
2
+
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
217
8
216
eqtrid
⊢
X
∈
ℂ
→
∑
k
=
0
4
−
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
218
217
oveq2d
⊢
X
∈
ℂ
→
X
4
−
∑
k
=
0
4
−
1
(
4
k
)
k
BernPoly
X
4
-
k
+
1
=
X
4
−
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
219
expcl
⊢
X
∈
ℂ
∧
4
∈
ℕ
0
→
X
4
∈
ℂ
220
1
219
mpan2
⊢
X
∈
ℂ
→
X
4
∈
ℂ
221
expcl
⊢
X
∈
ℂ
∧
3
∈
ℕ
0
→
X
3
∈
ℂ
222
201
221
mpan2
⊢
X
∈
ℂ
→
X
3
∈
ℂ
223
191
222
mulcld
⊢
X
∈
ℂ
→
2
X
3
∈
ℂ
224
sqcl
⊢
X
∈
ℂ
→
X
2
∈
ℂ
225
201
100
deccl
⊢
30
∈
ℕ
0
226
225
nn0cni
⊢
30
∈
ℂ
227
dfdec10
⊢
30
=
10
⋅
3
+
0
228
10re
⊢
10
∈
ℝ
229
228
recni
⊢
10
∈
ℂ
230
229
58
mulcli
⊢
10
⋅
3
∈
ℂ
231
230
addridi
⊢
10
⋅
3
+
0
=
10
⋅
3
232
227
231
eqtri
⊢
30
=
10
⋅
3
233
10pos
⊢
0
<
10
234
136
233
gtneii
⊢
10
≠
0
235
229
58
234
184
mulne0i
⊢
10
⋅
3
≠
0
236
232
235
eqnetri
⊢
30
≠
0
237
226
236
reccli
⊢
1
30
∈
ℂ
238
237
a1i
⊢
X
∈
ℂ
→
1
30
∈
ℂ
239
224
238
subcld
⊢
X
∈
ℂ
→
X
2
−
1
30
∈
ℂ
240
220
223
239
subsubd
⊢
X
∈
ℂ
→
X
4
−
2
X
3
−
X
2
−
1
30
=
X
4
−
2
X
3
+
X
2
-
1
30
241
161
a1i
⊢
X
∈
ℂ
→
1
5
∈
ℂ
242
id
⊢
X
∈
ℂ
→
X
∈
ℂ
243
87
204
reccli
⊢
1
2
∈
ℂ
244
243
a1i
⊢
X
∈
ℂ
→
1
2
∈
ℂ
245
242
244
subcld
⊢
X
∈
ℂ
→
X
−
1
2
∈
ℂ
246
241
245
addcld
⊢
X
∈
ℂ
→
1
5
+
X
-
1
2
∈
ℂ
247
224
242
subcld
⊢
X
∈
ℂ
→
X
2
−
X
∈
ℂ
248
6pos
⊢
0
<
6
249
136
248
gtneii
⊢
6
≠
0
250
178
249
reccli
⊢
1
6
∈
ℂ
251
250
a1i
⊢
X
∈
ℂ
→
1
6
∈
ℂ
252
247
251
addcld
⊢
X
∈
ℂ
→
X
2
-
X
+
1
6
∈
ℂ
253
191
252
mulcld
⊢
X
∈
ℂ
→
2
X
2
-
X
+
1
6
∈
ℂ
254
246
253
addcld
⊢
X
∈
ℂ
→
1
5
+
X
−
1
2
+
2
X
2
-
X
+
1
6
∈
ℂ
255
58
87
204
divcli
⊢
3
2
∈
ℂ
256
255
a1i
⊢
X
∈
ℂ
→
3
2
∈
ℂ
257
256
224
mulcld
⊢
X
∈
ℂ
→
3
2
X
2
∈
ℂ
258
222
257
subcld
⊢
X
∈
ℂ
→
X
3
−
3
2
X
2
∈
ℂ
259
244
242
mulcld
⊢
X
∈
ℂ
→
1
2
X
∈
ℂ
260
258
259
addcld
⊢
X
∈
ℂ
→
X
3
-
3
2
X
2
+
1
2
X
∈
ℂ
261
191
260
mulcld
⊢
X
∈
ℂ
→
2
X
3
-
3
2
X
2
+
1
2
X
∈
ℂ
262
254
261
addcomd
⊢
X
∈
ℂ
→
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
=
2
X
3
-
3
2
X
2
+
1
2
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
263
191
258
259
adddid
⊢
X
∈
ℂ
→
2
X
3
-
3
2
X
2
+
1
2
X
=
2
X
3
−
3
2
X
2
+
2
1
2
X
264
191
222
257
subdid
⊢
X
∈
ℂ
→
2
X
3
−
3
2
X
2
=
2
X
3
−
2
3
2
X
2
265
87
204
recidi
⊢
2
1
2
=
1
266
265
oveq1i
⊢
2
1
2
X
=
1
X
267
191
244
242
mulassd
⊢
X
∈
ℂ
→
2
1
2
X
=
2
1
2
X
268
mullid
⊢
X
∈
ℂ
→
1
X
=
X
269
266
267
268
3eqtr3a
⊢
X
∈
ℂ
→
2
1
2
X
=
X
270
264
269
oveq12d
⊢
X
∈
ℂ
→
2
X
3
−
3
2
X
2
+
2
1
2
X
=
2
X
3
-
2
3
2
X
2
+
X
271
263
270
eqtrd
⊢
X
∈
ℂ
→
2
X
3
-
3
2
X
2
+
1
2
X
=
2
X
3
-
2
3
2
X
2
+
X
272
271
oveq1d
⊢
X
∈
ℂ
→
2
X
3
-
3
2
X
2
+
1
2
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
2
X
3
−
2
3
2
X
2
+
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
273
191
257
mulcld
⊢
X
∈
ℂ
→
2
3
2
X
2
∈
ℂ
274
223
273
subcld
⊢
X
∈
ℂ
→
2
X
3
−
2
3
2
X
2
∈
ℂ
275
274
242
254
addassd
⊢
X
∈
ℂ
→
2
X
3
−
2
3
2
X
2
+
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
2
X
3
−
2
3
2
X
2
+
X
+
1
5
+
X
−
1
2
+
2
X
2
-
X
+
1
6
276
242
254
addcld
⊢
X
∈
ℂ
→
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
∈
ℂ
277
223
273
276
subsubd
⊢
X
∈
ℂ
→
2
X
3
−
2
3
2
X
2
−
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
2
X
3
−
2
3
2
X
2
+
X
+
1
5
+
X
−
1
2
+
2
X
2
-
X
+
1
6
278
191
256
224
mulassd
⊢
X
∈
ℂ
→
2
3
2
X
2
=
2
3
2
X
2
279
58
87
204
divcan2i
⊢
2
3
2
=
3
280
279
oveq1i
⊢
2
3
2
X
2
=
3
X
2
281
278
280
eqtr3di
⊢
X
∈
ℂ
→
2
3
2
X
2
=
3
X
2
282
281
oveq1d
⊢
X
∈
ℂ
→
2
3
2
X
2
−
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
3
X
2
−
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
283
242
246
253
add12d
⊢
X
∈
ℂ
→
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
1
5
+
X
−
1
2
+
X
+
2
X
2
-
X
+
1
6
284
191
247
251
adddid
⊢
X
∈
ℂ
→
2
X
2
-
X
+
1
6
=
2
X
2
−
X
+
2
1
6
285
191
224
242
subdid
⊢
X
∈
ℂ
→
2
X
2
−
X
=
2
X
2
−
2
X
286
187
oveq2i
⊢
2
3
⋅
2
=
2
6
287
58
184
reccli
⊢
1
3
∈
ℂ
288
58
87
287
mul32i
⊢
3
⋅
2
1
3
=
3
1
3
⋅
2
289
58
184
recidi
⊢
3
1
3
=
1
290
289
oveq1i
⊢
3
1
3
⋅
2
=
1
⋅
2
291
87
mullidi
⊢
1
⋅
2
=
2
292
290
291
eqtri
⊢
3
1
3
⋅
2
=
2
293
288
292
eqtri
⊢
3
⋅
2
1
3
=
2
294
187
178
eqeltri
⊢
3
⋅
2
∈
ℂ
295
187
249
eqnetri
⊢
3
⋅
2
≠
0
296
87
294
287
295
divmuli
⊢
2
3
⋅
2
=
1
3
↔
3
⋅
2
1
3
=
2
297
293
296
mpbir
⊢
2
3
⋅
2
=
1
3
298
87
178
249
divreci
⊢
2
6
=
2
1
6
299
286
297
298
3eqtr3ri
⊢
2
1
6
=
1
3
300
299
a1i
⊢
X
∈
ℂ
→
2
1
6
=
1
3
301
285
300
oveq12d
⊢
X
∈
ℂ
→
2
X
2
−
X
+
2
1
6
=
2
X
2
-
2
X
+
1
3
302
284
301
eqtrd
⊢
X
∈
ℂ
→
2
X
2
-
X
+
1
6
=
2
X
2
-
2
X
+
1
3
303
302
oveq2d
⊢
X
∈
ℂ
→
X
+
2
X
2
-
X
+
1
6
=
X
+
2
X
2
−
2
X
+
1
3
304
191
224
mulcld
⊢
X
∈
ℂ
→
2
X
2
∈
ℂ
305
191
242
mulcld
⊢
X
∈
ℂ
→
2
X
∈
ℂ
306
304
305
subcld
⊢
X
∈
ℂ
→
2
X
2
−
2
X
∈
ℂ
307
287
a1i
⊢
X
∈
ℂ
→
1
3
∈
ℂ
308
242
306
307
addassd
⊢
X
∈
ℂ
→
X
+
2
X
2
−
2
X
+
1
3
=
X
+
2
X
2
−
2
X
+
1
3
309
242
304
305
addsub12d
⊢
X
∈
ℂ
→
X
+
2
X
2
-
2
X
=
2
X
2
+
X
-
2
X
310
309
oveq1d
⊢
X
∈
ℂ
→
X
+
2
X
2
−
2
X
+
1
3
=
2
X
2
+
X
−
2
X
+
1
3
311
303
308
310
3eqtr2d
⊢
X
∈
ℂ
→
X
+
2
X
2
-
X
+
1
6
=
2
X
2
+
X
−
2
X
+
1
3
312
311
oveq2d
⊢
X
∈
ℂ
→
1
5
+
X
−
1
2
+
X
+
2
X
2
-
X
+
1
6
=
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
313
283
312
eqtrd
⊢
X
∈
ℂ
→
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
314
313
oveq2d
⊢
X
∈
ℂ
→
3
X
2
−
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
3
X
2
−
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
315
242
305
subcld
⊢
X
∈
ℂ
→
X
−
2
X
∈
ℂ
316
304
315
addcld
⊢
X
∈
ℂ
→
2
X
2
+
X
-
2
X
∈
ℂ
317
241
245
316
307
add4d
⊢
X
∈
ℂ
→
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
=
1
5
+
2
X
2
+
X
-
2
X
+
X
−
1
2
+
1
3
318
241
304
315
add12d
⊢
X
∈
ℂ
→
1
5
+
2
X
2
+
X
−
2
X
=
2
X
2
+
1
5
+
X
−
2
X
319
318
oveq1d
⊢
X
∈
ℂ
→
1
5
+
2
X
2
+
X
-
2
X
+
X
−
1
2
+
1
3
=
2
X
2
+
1
5
+
X
-
2
X
+
X
−
1
2
+
1
3
320
241
315
addcld
⊢
X
∈
ℂ
→
1
5
+
X
-
2
X
∈
ℂ
321
245
307
addcld
⊢
X
∈
ℂ
→
X
-
1
2
+
1
3
∈
ℂ
322
304
320
321
addassd
⊢
X
∈
ℂ
→
2
X
2
+
1
5
+
X
-
2
X
+
X
−
1
2
+
1
3
=
2
X
2
+
1
5
+
X
-
2
X
+
X
-
1
2
+
1
3
323
317
319
322
3eqtrd
⊢
X
∈
ℂ
→
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
=
2
X
2
+
1
5
+
X
-
2
X
+
X
-
1
2
+
1
3
324
323
oveq2d
⊢
X
∈
ℂ
→
3
X
2
−
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
=
3
X
2
−
2
X
2
+
1
5
+
X
-
2
X
+
X
-
1
2
+
1
3
325
183
224
mulcld
⊢
X
∈
ℂ
→
3
X
2
∈
ℂ
326
320
321
addcld
⊢
X
∈
ℂ
→
1
5
+
X
−
2
X
+
X
−
1
2
+
1
3
∈
ℂ
327
325
304
326
subsub4d
⊢
X
∈
ℂ
→
3
X
2
-
2
X
2
-
1
5
+
X
−
2
X
+
X
−
1
2
+
1
3
=
3
X
2
−
2
X
2
+
1
5
+
X
-
2
X
+
X
-
1
2
+
1
3
328
58
87
59
109
subaddrii
⊢
3
−
2
=
1
329
328
oveq1i
⊢
3
−
2
X
2
=
1
X
2
330
183
191
224
subdird
⊢
X
∈
ℂ
→
3
−
2
X
2
=
3
X
2
−
2
X
2
331
224
mullidd
⊢
X
∈
ℂ
→
1
X
2
=
X
2
332
329
330
331
3eqtr3a
⊢
X
∈
ℂ
→
3
X
2
−
2
X
2
=
X
2
333
241
305
242
subsubd
⊢
X
∈
ℂ
→
1
5
−
2
X
−
X
=
1
5
-
2
X
+
X
334
2txmxeqx
⊢
X
∈
ℂ
→
2
X
−
X
=
X
335
334
oveq2d
⊢
X
∈
ℂ
→
1
5
−
2
X
−
X
=
1
5
−
X
336
241
305
242
subadd23d
⊢
X
∈
ℂ
→
1
5
-
2
X
+
X
=
1
5
+
X
-
2
X
337
333
335
336
3eqtr3d
⊢
X
∈
ℂ
→
1
5
−
X
=
1
5
+
X
-
2
X
338
242
244
307
subsubd
⊢
X
∈
ℂ
→
X
−
1
2
−
1
3
=
X
-
1
2
+
1
3
339
337
338
oveq12d
⊢
X
∈
ℂ
→
1
5
−
X
+
X
-
1
2
−
1
3
=
1
5
+
X
−
2
X
+
X
−
1
2
+
1
3
340
243
287
subcli
⊢
1
2
−
1
3
∈
ℂ
341
340
a1i
⊢
X
∈
ℂ
→
1
2
−
1
3
∈
ℂ
342
241
242
341
npncand
⊢
X
∈
ℂ
→
1
5
−
X
+
X
-
1
2
−
1
3
=
1
5
−
1
2
−
1
3
343
halfthird
⊢
1
2
−
1
3
=
1
6
344
343
oveq2i
⊢
1
5
−
1
2
−
1
3
=
1
5
−
1
6
345
5recm6rec
⊢
1
5
−
1
6
=
1
30
346
344
345
eqtri
⊢
1
5
−
1
2
−
1
3
=
1
30
347
342
346
eqtrdi
⊢
X
∈
ℂ
→
1
5
−
X
+
X
-
1
2
−
1
3
=
1
30
348
339
347
eqtr3d
⊢
X
∈
ℂ
→
1
5
+
X
−
2
X
+
X
−
1
2
+
1
3
=
1
30
349
332
348
oveq12d
⊢
X
∈
ℂ
→
3
X
2
-
2
X
2
-
1
5
+
X
−
2
X
+
X
−
1
2
+
1
3
=
X
2
−
1
30
350
324
327
349
3eqtr2d
⊢
X
∈
ℂ
→
3
X
2
−
1
5
+
X
−
1
2
+
2
X
2
+
X
-
2
X
+
1
3
=
X
2
−
1
30
351
282
314
350
3eqtrd
⊢
X
∈
ℂ
→
2
3
2
X
2
−
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
X
2
−
1
30
352
351
oveq2d
⊢
X
∈
ℂ
→
2
X
3
−
2
3
2
X
2
−
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
2
X
3
−
X
2
−
1
30
353
275
277
352
3eqtr2d
⊢
X
∈
ℂ
→
2
X
3
−
2
3
2
X
2
+
X
+
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
=
2
X
3
−
X
2
−
1
30
354
262
272
353
3eqtrd
⊢
X
∈
ℂ
→
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
=
2
X
3
−
X
2
−
1
30
355
354
oveq2d
⊢
X
∈
ℂ
→
X
4
−
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
=
X
4
−
2
X
3
−
X
2
−
1
30
356
220
223
subcld
⊢
X
∈
ℂ
→
X
4
−
2
X
3
∈
ℂ
357
356
224
238
addsubassd
⊢
X
∈
ℂ
→
X
4
−
2
X
3
+
X
2
-
1
30
=
X
4
−
2
X
3
+
X
2
-
1
30
358
240
355
357
3eqtr4d
⊢
X
∈
ℂ
→
X
4
−
1
5
+
X
-
1
2
+
2
X
2
-
X
+
1
6
+
2
X
3
-
3
2
X
2
+
1
2
X
=
X
4
−
2
X
3
+
X
2
-
1
30
359
3
218
358
3eqtrd
⊢
X
∈
ℂ
→
4
BernPoly
X
=
X
4
−
2
X
3
+
X
2
-
1
30