Metamath Proof Explorer


Theorem breprexp

Description: Express the S th power of the finite series in terms of the number of representations of integers m as sums of S terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in L . See breprexpnat for the simple case presented in the proposition of Nathanson p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021)

Ref Expression
Hypotheses breprexp.n φN0
breprexp.s φS0
breprexp.z φZ
breprexp.h φL:0..^S
Assertion breprexp φa0..^Sb=1NLabZb=m=0S Nc1NreprSma0..^SLacaZm

Proof

Step Hyp Ref Expression
1 breprexp.n φN0
2 breprexp.s φS0
3 breprexp.z φZ
4 breprexp.h φL:0..^S
5 nn0ssre 0
6 5 a1i φ0
7 6 sselda φS0S
8 leid SSS
9 7 8 syl φS0SS
10 breq1 t=0tS0S
11 oveq2 t=00..^t=0..^0
12 11 prodeq1d t=0a0..^tb=1NLabZb=a0..^0b=1NLabZb
13 oveq1 t=0t N=0 N
14 13 oveq2d t=00t N=00 N
15 fveq2 t=0reprt=repr0
16 15 oveqd t=01Nreprtm=1Nrepr0m
17 11 prodeq1d t=0a0..^tLaca=a0..^0Laca
18 17 oveq1d t=0a0..^tLacaZm=a0..^0LacaZm
19 18 adantr t=0c1Nreprtma0..^tLacaZm=a0..^0LacaZm
20 16 19 sumeq12dv t=0c1Nreprtma0..^tLacaZm=c1Nrepr0ma0..^0LacaZm
21 20 adantr t=0m0t Nc1Nreprtma0..^tLacaZm=c1Nrepr0ma0..^0LacaZm
22 14 21 sumeq12dv t=0m=0t Nc1Nreprtma0..^tLacaZm=m=00 Nc1Nrepr0ma0..^0LacaZm
23 12 22 eqeq12d t=0a0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZma0..^0b=1NLabZb=m=00 Nc1Nrepr0ma0..^0LacaZm
24 10 23 imbi12d t=0tSa0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZm0Sa0..^0b=1NLabZb=m=00 Nc1Nrepr0ma0..^0LacaZm
25 breq1 t=stSsS
26 oveq2 t=s0..^t=0..^s
27 26 prodeq1d t=sa0..^tb=1NLabZb=a0..^sb=1NLabZb
28 oveq1 t=st N=s N
29 28 oveq2d t=s0t N=0s N
30 fveq2 t=sreprt=reprs
31 30 oveqd t=s1Nreprtm=1Nreprsm
32 26 prodeq1d t=sa0..^tLaca=a0..^sLaca
33 32 oveq1d t=sa0..^tLacaZm=a0..^sLacaZm
34 33 adantr t=sc1Nreprtma0..^tLacaZm=a0..^sLacaZm
35 31 34 sumeq12dv t=sc1Nreprtma0..^tLacaZm=c1Nreprsma0..^sLacaZm
36 35 adantr t=sm0t Nc1Nreprtma0..^tLacaZm=c1Nreprsma0..^sLacaZm
37 29 36 sumeq12dv t=sm=0t Nc1Nreprtma0..^tLacaZm=m=0s Nc1Nreprsma0..^sLacaZm
38 27 37 eqeq12d t=sa0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZma0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZm
39 25 38 imbi12d t=stSa0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZmsSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZm
40 breq1 t=s+1tSs+1S
41 oveq2 t=s+10..^t=0..^s+1
42 41 prodeq1d t=s+1a0..^tb=1NLabZb=a0..^s+1b=1NLabZb
43 oveq1 t=s+1t N=s+1 N
44 43 oveq2d t=s+10t N=0s+1 N
45 fveq2 t=s+1reprt=reprs+1
46 45 oveqd t=s+11Nreprtm=1Nreprs+1m
47 41 prodeq1d t=s+1a0..^tLaca=a0..^s+1Laca
48 47 oveq1d t=s+1a0..^tLacaZm=a0..^s+1LacaZm
49 48 adantr t=s+1c1Nreprtma0..^tLacaZm=a0..^s+1LacaZm
50 46 49 sumeq12dv t=s+1c1Nreprtma0..^tLacaZm=c1Nreprs+1ma0..^s+1LacaZm
51 50 adantr t=s+1m0t Nc1Nreprtma0..^tLacaZm=c1Nreprs+1ma0..^s+1LacaZm
52 44 51 sumeq12dv t=s+1m=0t Nc1Nreprtma0..^tLacaZm=m=0s+1 Nc1Nreprs+1ma0..^s+1LacaZm
53 42 52 eqeq12d t=s+1a0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZma0..^s+1b=1NLabZb=m=0s+1 Nc1Nreprs+1ma0..^s+1LacaZm
54 40 53 imbi12d t=s+1tSa0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZms+1Sa0..^s+1b=1NLabZb=m=0s+1 Nc1Nreprs+1ma0..^s+1LacaZm
55 breq1 t=StSSS
56 oveq2 t=S0..^t=0..^S
57 56 prodeq1d t=Sa0..^tb=1NLabZb=a0..^Sb=1NLabZb
58 oveq1 t=St N=S N
59 58 oveq2d t=S0t N=0S N
60 fveq2 t=Sreprt=reprS
61 60 oveqd t=S1Nreprtm=1NreprSm
62 56 prodeq1d t=Sa0..^tLaca=a0..^SLaca
63 62 oveq1d t=Sa0..^tLacaZm=a0..^SLacaZm
64 63 adantr t=Sc1Nreprtma0..^tLacaZm=a0..^SLacaZm
65 61 64 sumeq12dv t=Sc1Nreprtma0..^tLacaZm=c1NreprSma0..^SLacaZm
66 65 adantr t=Sm0t Nc1Nreprtma0..^tLacaZm=c1NreprSma0..^SLacaZm
67 59 66 sumeq12dv t=Sm=0t Nc1Nreprtma0..^tLacaZm=m=0S Nc1NreprSma0..^SLacaZm
68 57 67 eqeq12d t=Sa0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZma0..^Sb=1NLabZb=m=0S Nc1NreprSma0..^SLacaZm
69 55 68 imbi12d t=StSa0..^tb=1NLabZb=m=0t Nc1Nreprtma0..^tLacaZmSSa0..^Sb=1NLabZb=m=0S Nc1NreprSma0..^SLacaZm
70 0nn0 00
71 fz1ssnn 1N
72 71 a1i φ1N
73 0zd φ0
74 72 73 1 repr0 φ1Nrepr00=if0=0
75 eqid 0=0
76 75 iftruei if0=0=
77 74 76 eqtrdi φ1Nrepr00=
78 snfi Fin
79 77 78 eqeltrdi φ1Nrepr00Fin
80 fzo0 0..^0=
81 80 prodeq1i a0..^0Laca=aLaca
82 prod0 aLaca=1
83 81 82 eqtri a0..^0Laca=1
84 83 a1i φa0..^0Laca=1
85 exp0 ZZ0=1
86 3 85 syl φZ0=1
87 84 86 oveq12d φa0..^0LacaZ0=11
88 ax-1cn 1
89 88 mulridi 11=1
90 87 89 eqtrdi φa0..^0LacaZ0=1
91 90 88 eqeltrdi φa0..^0LacaZ0
92 91 adantr φc1Nrepr00a0..^0LacaZ0
93 79 92 fsumcl φc1Nrepr00a0..^0LacaZ0
94 oveq2 m=01Nrepr0m=1Nrepr00
95 simpl m=0c1Nrepr0mm=0
96 95 oveq2d m=0c1Nrepr0mZm=Z0
97 96 oveq2d m=0c1Nrepr0ma0..^0LacaZm=a0..^0LacaZ0
98 94 97 sumeq12dv m=0c1Nrepr0ma0..^0LacaZm=c1Nrepr00a0..^0LacaZ0
99 98 sumsn 00c1Nrepr00a0..^0LacaZ0m0c1Nrepr0ma0..^0LacaZm=c1Nrepr00a0..^0LacaZ0
100 70 93 99 sylancr φm0c1Nrepr0ma0..^0LacaZm=c1Nrepr00a0..^0LacaZ0
101 77 sumeq1d φc1Nrepr00a0..^0LacaZ0=ca0..^0LacaZ0
102 0ex V
103 80 prodeq1i a0..^0Laa=aLaa
104 prod0 aLaa=1
105 103 104 eqtri a0..^0Laa=1
106 105 a1i φa0..^0Laa=1
107 106 88 eqeltrdi φa0..^0Laa
108 86 88 eqeltrdi φZ0
109 107 108 mulcld φa0..^0LaaZ0
110 fveq1 c=ca=a
111 110 fveq2d c=Laca=Laa
112 111 ralrimivw c=a0..^0Laca=Laa
113 112 prodeq2d c=a0..^0Laca=a0..^0Laa
114 113 oveq1d c=a0..^0LacaZ0=a0..^0LaaZ0
115 114 sumsn Va0..^0LaaZ0ca0..^0LacaZ0=a0..^0LaaZ0
116 102 109 115 sylancr φca0..^0LacaZ0=a0..^0LaaZ0
117 106 86 oveq12d φa0..^0LaaZ0=11
118 117 87 90 3eqtr2d φa0..^0LaaZ0=1
119 116 118 eqtrd φca0..^0LacaZ0=1
120 100 101 119 3eqtrd φm0c1Nrepr0ma0..^0LacaZm=1
121 1 nn0cnd φN
122 121 mul02d φ0 N=0
123 122 oveq2d φ00 N=00
124 fz0sn 00=0
125 123 124 eqtrdi φ00 N=0
126 125 sumeq1d φm=00 Nc1Nrepr0ma0..^0LacaZm=m0c1Nrepr0ma0..^0LacaZm
127 80 prodeq1i a0..^0b=1NLabZb=ab=1NLabZb
128 prod0 ab=1NLabZb=1
129 127 128 eqtri a0..^0b=1NLabZb=1
130 129 a1i φa0..^0b=1NLabZb=1
131 120 126 130 3eqtr4rd φa0..^0b=1NLabZb=m=00 Nc1Nrepr0ma0..^0LacaZm
132 131 a1d φ0Sa0..^0b=1NLabZb=m=00 Nc1Nrepr0ma0..^0LacaZm
133 simpll φs0sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZms+1Sφs0
134 simplr φs0sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZms+1SsSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZm
135 oveq2 m=n1Nreprsm=1Nreprsn
136 oveq2 m=nZm=Zn
137 136 oveq2d m=na0..^sLacaZm=a0..^sLacaZn
138 137 adantr m=nc1Nreprsma0..^sLacaZm=a0..^sLacaZn
139 135 138 sumeq12dv m=nc1Nreprsma0..^sLacaZm=c1Nreprsna0..^sLacaZn
140 139 cbvsumv m=0s Nc1Nreprsma0..^sLacaZm=n=0s Nc1Nreprsna0..^sLacaZn
141 140 eqeq2i a0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZma0..^sb=1NLabZb=n=0s Nc1Nreprsna0..^sLacaZn
142 simpl a=ib1Na=i
143 142 fveq2d a=ib1NLa=Li
144 143 fveq1d a=ib1NLab=Lib
145 144 oveq1d a=ib1NLabZb=LibZb
146 145 sumeq2dv a=ib=1NLabZb=b=1NLibZb
147 146 cbvprodv a0..^sb=1NLabZb=i0..^sb=1NLibZb
148 fveq2 b=jLib=Lij
149 oveq2 b=jZb=Zj
150 148 149 oveq12d b=jLibZb=LijZj
151 150 cbvsumv b=1NLibZb=j=1NLijZj
152 151 a1i i0..^sb=1NLibZb=j=1NLijZj
153 152 prodeq2i i0..^sb=1NLibZb=i0..^sj=1NLijZj
154 147 153 eqtri a0..^sb=1NLabZb=i0..^sj=1NLijZj
155 fveq2 a=iLa=Li
156 fveq2 a=ica=ci
157 155 156 fveq12d a=iLaca=Lici
158 157 cbvprodv a0..^sLaca=i0..^sLici
159 158 oveq1i a0..^sLacaZn=i0..^sLiciZn
160 159 a1i c1Nreprsna0..^sLacaZn=i0..^sLiciZn
161 160 sumeq2i c1Nreprsna0..^sLacaZn=c1Nreprsni0..^sLiciZn
162 simpl c=ki0..^sc=k
163 162 fveq1d c=ki0..^sci=ki
164 163 fveq2d c=ki0..^sLici=Liki
165 164 prodeq2dv c=ki0..^sLici=i0..^sLiki
166 165 oveq1d c=ki0..^sLiciZn=i0..^sLikiZn
167 166 cbvsumv c1Nreprsni0..^sLiciZn=k1Nreprsni0..^sLikiZn
168 161 167 eqtri c1Nreprsna0..^sLacaZn=k1Nreprsni0..^sLikiZn
169 168 a1i n0s Nc1Nreprsna0..^sLacaZn=k1Nreprsni0..^sLikiZn
170 169 sumeq2i n=0s Nc1Nreprsna0..^sLacaZn=n=0s Nk1Nreprsni0..^sLikiZn
171 154 170 eqeq12i a0..^sb=1NLabZb=n=0s Nc1Nreprsna0..^sLacaZni0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZn
172 141 171 bitri a0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZmi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZn
173 172 imbi2i sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZmsSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZn
174 134 173 sylib φs0sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZms+1SsSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZn
175 simpr φs0sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZms+1Ss+1S
176 1 ad3antrrr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SN0
177 2 ad3antrrr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SS0
178 3 ad3antrrr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SZ
179 4 ad3antrrr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SL:0..^S
180 simpllr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Ss0
181 simpr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Ss+1S
182 5 180 sselid φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Ss
183 1red φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1S1
184 182 183 readdcld φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Ss+1
185 5 177 sselid φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SS
186 182 ltp1d φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Ss<s+1
187 182 184 186 ltled φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Sss+1
188 182 184 185 187 181 letrd φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SsS
189 simplr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SsSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZn
190 189 173 sylibr φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1SsSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZm
191 188 190 mpd φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Sa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZm
192 176 177 178 179 180 181 191 breprexplemc φs0sSi0..^sj=1NLijZj=n=0s Nk1Nreprsni0..^sLikiZns+1Sa0..^s+1b=1NLabZb=m=0s+1 Nc1Nreprs+1ma0..^s+1LacaZm
193 133 174 175 192 syl21anc φs0sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZms+1Sa0..^s+1b=1NLabZb=m=0s+1 Nc1Nreprs+1ma0..^s+1LacaZm
194 193 ex φs0sSa0..^sb=1NLabZb=m=0s Nc1Nreprsma0..^sLacaZms+1Sa0..^s+1b=1NLabZb=m=0s+1 Nc1Nreprs+1ma0..^s+1LacaZm
195 24 39 54 69 132 194 nn0indd φS0SSa0..^Sb=1NLabZb=m=0S Nc1NreprSma0..^SLacaZm
196 9 195 mpd φS0a0..^Sb=1NLabZb=m=0S Nc1NreprSma0..^SLacaZm
197 2 196 mpdan φa0..^Sb=1NLabZb=m=0S Nc1NreprSma0..^SLacaZm