Metamath Proof Explorer


Theorem ccfldextdgrr

Description: The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023)

Ref Expression
Assertion ccfldextdgrr fld.:.fld=2

Proof

Step Hyp Ref Expression
1 ccfldextrr fld/FldExtfld
2 extdgval fld/FldExtfldfld.:.fld=dimsubringAlgfldBasefld
3 1 2 ax-mp fld.:.fld=dimsubringAlgfldBasefld
4 rebase =Basefld
5 4 fveq2i subringAlgfld=subringAlgfldBasefld
6 5 fveq2i dimsubringAlgfld=dimsubringAlgfldBasefld
7 ccfldsrarelvec subringAlgfldLVec
8 df-pr 1i=1i
9 eqid LSpansubringAlgfld=LSpansubringAlgfld
10 eqidd subringAlgfld=subringAlgfld
11 cnfld0 0=0fld
12 11 a1i 0=0fld
13 ax-resscn
14 cnfldbas =Basefld
15 13 14 sseqtri Basefld
16 15 a1i Basefld
17 10 12 16 sralmod0 0=0subringAlgfld
18 17 mptru 0=0subringAlgfld
19 7 a1i subringAlgfldLVec
20 ax-1cn 1
21 ax-1ne0 10
22 10 16 srabase Basefld=BasesubringAlgfld
23 22 mptru Basefld=BasesubringAlgfld
24 14 23 eqtri =BasesubringAlgfld
25 24 18 lindssn subringAlgfldLVec1101LIndSsubringAlgfld
26 7 20 21 25 mp3an 1LIndSsubringAlgfld
27 26 a1i 1LIndSsubringAlgfld
28 ax-icn i
29 ine0 i0
30 24 18 lindssn subringAlgfldLVecii0iLIndSsubringAlgfld
31 7 28 29 30 mp3an iLIndSsubringAlgfld
32 31 a1i iLIndSsubringAlgfld
33 lveclmod subringAlgfldLVecsubringAlgfldLMod
34 7 33 ax-mp subringAlgfldLMod
35 df-refld fld=fld𝑠
36 10 16 srasca fld𝑠=ScalarsubringAlgfld
37 36 mptru fld𝑠=ScalarsubringAlgfld
38 35 37 eqtri fld=ScalarsubringAlgfld
39 cnfldmul ×=fld
40 10 16 sravsca fld=subringAlgfld
41 40 mptru fld=subringAlgfld
42 39 41 eqtri ×=subringAlgfld
43 38 4 24 42 9 lspsnel subringAlgfldLMod1zLSpansubringAlgfld1xz=x1
44 34 20 43 mp2an zLSpansubringAlgfld1xz=x1
45 38 4 24 42 9 lspsnel subringAlgfldLModizLSpansubringAlgfldiyz=yi
46 34 28 45 mp2an zLSpansubringAlgfldiyz=yi
47 44 46 anbi12i zLSpansubringAlgfld1zLSpansubringAlgfldixz=x1yz=yi
48 reeanv xyz=x1z=yixz=x1yz=yi
49 simprl xyz=x1z=yiz=x1
50 simpll xyz=x1z=yix
51 50 recnd xyz=x1z=yix
52 51 mulridd xyz=x1z=yix1=x
53 49 52 eqtrd xyz=x1z=yiz=x
54 53 negeqd xyz=x1z=yiz=x
55 simprr xyz=x1z=yiz=yi
56 simplr xyz=x1z=yiy
57 56 recnd xyz=x1z=yiy
58 28 a1i xyz=x1z=yii
59 57 58 mulcomd xyz=x1z=yiyi=iy
60 55 59 eqtrd xyz=x1z=yiz=iy
61 54 60 oveq12d xyz=x1z=yi-z+z=-x+iy
62 53 51 eqeltrd xyz=x1z=yiz
63 62 subidd xyz=x1z=yizz=0
64 63 negeqd xyz=x1z=yizz=0
65 62 62 negsubdid xyz=x1z=yizz=-z+z
66 neg0 0=0
67 66 a1i xyz=x1z=yi0=0
68 64 65 67 3eqtr3d xyz=x1z=yi-z+z=0
69 61 68 eqtr3d xyz=x1z=yi-x+iy=0
70 50 renegcld xyz=x1z=yix
71 creq0 xyx=0y=0-x+iy=0
72 70 56 71 syl2anc xyz=x1z=yix=0y=0-x+iy=0
73 69 72 mpbird xyz=x1z=yix=0y=0
74 73 simpld xyz=x1z=yix=0
75 51 74 negcon1ad xyz=x1z=yi0=x
76 53 75 67 3eqtr2d xyz=x1z=yiz=0
77 76 ex xyz=x1z=yiz=0
78 77 rexlimivv xyz=x1z=yiz=0
79 0red z=00
80 simpr z=0x=0x=0
81 80 oveq1d z=0x=0x1=01
82 81 eqeq2d z=0x=0z=x1z=01
83 82 anbi1d z=0x=0z=x1z=yiz=01z=yi
84 83 rexbidv z=0x=0yz=x1z=yiyz=01z=yi
85 simpr z=0y=0y=0
86 85 oveq1d z=0y=0yi=0i
87 86 eqeq2d z=0y=0z=yiz=0i
88 87 anbi2d z=0y=0z=01z=yiz=01z=0i
89 20 mul02i 01=0
90 89 eqeq2i z=01z=0
91 90 biimpri z=0z=01
92 28 mul02i 0i=0
93 92 eqeq2i z=0iz=0
94 93 biimpri z=0z=0i
95 91 94 jca z=0z=01z=0i
96 79 88 95 rspcedvd z=0yz=01z=yi
97 79 84 96 rspcedvd z=0xyz=x1z=yi
98 78 97 impbii xyz=x1z=yiz=0
99 47 48 98 3bitr2i zLSpansubringAlgfld1zLSpansubringAlgfldiz=0
100 elin zLSpansubringAlgfld1LSpansubringAlgfldizLSpansubringAlgfld1zLSpansubringAlgfldi
101 velsn z0z=0
102 99 100 101 3bitr4i zLSpansubringAlgfld1LSpansubringAlgfldiz0
103 102 eqriv LSpansubringAlgfld1LSpansubringAlgfldi=0
104 103 a1i LSpansubringAlgfld1LSpansubringAlgfldi=0
105 9 18 19 27 32 104 lindsun 1iLIndSsubringAlgfld
106 105 mptru 1iLIndSsubringAlgfld
107 8 106 eqeltri 1iLIndSsubringAlgfld
108 cnfldadd +=+fld
109 10 16 sraaddg +fld=+subringAlgfld
110 109 mptru +fld=+subringAlgfld
111 108 110 eqtri +=+subringAlgfld
112 34 a1i subringAlgfldLMod
113 1cnd 1
114 28 a1i i
115 24 111 38 4 42 9 112 113 114 lspprel zLSpansubringAlgfld1ixyz=x1+yi
116 115 mptru zLSpansubringAlgfld1ixyz=x1+yi
117 simpl xyx
118 117 recnd xyx
119 1cnd xy1
120 118 119 mulcld xyx1
121 simpr xyy
122 121 recnd xyy
123 28 a1i xyi
124 122 123 mulcld xyyi
125 120 124 addcld xyx1+yi
126 eleq1 z=x1+yizx1+yi
127 125 126 syl5ibrcom xyz=x1+yiz
128 127 rexlimivv xyz=x1+yiz
129 recl zz
130 simpr zx=zx=z
131 130 oveq1d zx=zx1=z1
132 131 oveq1d zx=zx1+yi=z1+yi
133 132 eqeq2d zx=zz=x1+yiz=z1+yi
134 133 rexbidv zx=zyz=x1+yiyz=z1+yi
135 imcl zz
136 simpr zy=zy=z
137 136 oveq1d zy=zyi=zi
138 137 oveq2d zy=zz1+yi=z1+zi
139 138 eqeq2d zy=zz=z1+yiz=z1+zi
140 replim zz=z+iz
141 129 recnd zz
142 141 mulridd zz1=z
143 135 recnd zz
144 28 a1i zi
145 143 144 mulcomd zzi=iz
146 142 145 oveq12d zz1+zi=z+iz
147 140 146 eqtr4d zz=z1+zi
148 135 139 147 rspcedvd zyz=z1+yi
149 129 134 148 rspcedvd zxyz=x1+yi
150 128 149 impbii xyz=x1+yiz
151 116 150 bitri zLSpansubringAlgfld1iz
152 151 eqriv LSpansubringAlgfld1i=
153 eqid LBasissubringAlgfld=LBasissubringAlgfld
154 24 153 9 islbs4 1iLBasissubringAlgfld1iLIndSsubringAlgfldLSpansubringAlgfld1i=
155 107 152 154 mpbir2an 1iLBasissubringAlgfld
156 153 dimval subringAlgfldLVec1iLBasissubringAlgflddimsubringAlgfld=1i
157 7 155 156 mp2an dimsubringAlgfld=1i
158 1nei 1i
159 hashprg 1i1i1i=2
160 20 28 159 mp2an 1i1i=2
161 158 160 mpbi 1i=2
162 157 161 eqtri dimsubringAlgfld=2
163 3 6 162 3eqtr2i fld.:.fld=2