Step |
Hyp |
Ref |
Expression |
1 |
|
ccfldextrr |
|
2 |
|
extdgval |
|
3 |
1 2
|
ax-mp |
|
4 |
|
rebase |
|
5 |
4
|
fveq2i |
|
6 |
5
|
fveq2i |
|
7 |
|
ccfldsrarelvec |
|
8 |
|
df-pr |
|
9 |
|
eqid |
|
10 |
|
eqidd |
|
11 |
|
cnfld0 |
|
12 |
11
|
a1i |
|
13 |
|
ax-resscn |
|
14 |
|
cnfldbas |
|
15 |
13 14
|
sseqtri |
|
16 |
15
|
a1i |
|
17 |
10 12 16
|
sralmod0 |
|
18 |
17
|
mptru |
|
19 |
7
|
a1i |
|
20 |
|
ax-1cn |
|
21 |
|
ax-1ne0 |
|
22 |
10 16
|
srabase |
|
23 |
22
|
mptru |
|
24 |
14 23
|
eqtri |
|
25 |
24 18
|
lindssn |
|
26 |
7 20 21 25
|
mp3an |
|
27 |
26
|
a1i |
|
28 |
|
ax-icn |
|
29 |
|
ine0 |
|
30 |
24 18
|
lindssn |
|
31 |
7 28 29 30
|
mp3an |
|
32 |
31
|
a1i |
|
33 |
|
lveclmod |
|
34 |
7 33
|
ax-mp |
|
35 |
|
df-refld |
|
36 |
10 16
|
srasca |
|
37 |
36
|
mptru |
|
38 |
35 37
|
eqtri |
|
39 |
|
cnfldmul |
|
40 |
10 16
|
sravsca |
|
41 |
40
|
mptru |
|
42 |
39 41
|
eqtri |
|
43 |
38 4 24 42 9
|
lspsnel |
|
44 |
34 20 43
|
mp2an |
|
45 |
38 4 24 42 9
|
lspsnel |
|
46 |
34 28 45
|
mp2an |
|
47 |
44 46
|
anbi12i |
|
48 |
|
reeanv |
|
49 |
|
simprl |
|
50 |
|
simpll |
|
51 |
50
|
recnd |
|
52 |
51
|
mulid1d |
|
53 |
49 52
|
eqtrd |
|
54 |
53
|
negeqd |
|
55 |
|
simprr |
|
56 |
|
simplr |
|
57 |
56
|
recnd |
|
58 |
28
|
a1i |
|
59 |
57 58
|
mulcomd |
|
60 |
55 59
|
eqtrd |
|
61 |
54 60
|
oveq12d |
|
62 |
53 51
|
eqeltrd |
|
63 |
62
|
subidd |
|
64 |
63
|
negeqd |
|
65 |
62 62
|
negsubdid |
|
66 |
|
neg0 |
|
67 |
66
|
a1i |
|
68 |
64 65 67
|
3eqtr3d |
|
69 |
61 68
|
eqtr3d |
|
70 |
50
|
renegcld |
|
71 |
|
creq0 |
|
72 |
70 56 71
|
syl2anc |
|
73 |
69 72
|
mpbird |
|
74 |
73
|
simpld |
|
75 |
51 74
|
negcon1ad |
|
76 |
53 75 67
|
3eqtr2d |
|
77 |
76
|
ex |
|
78 |
77
|
rexlimivv |
|
79 |
|
0red |
|
80 |
|
simpr |
|
81 |
80
|
oveq1d |
|
82 |
81
|
eqeq2d |
|
83 |
82
|
anbi1d |
|
84 |
83
|
rexbidv |
|
85 |
|
simpr |
|
86 |
85
|
oveq1d |
|
87 |
86
|
eqeq2d |
|
88 |
87
|
anbi2d |
|
89 |
20
|
mul02i |
|
90 |
89
|
eqeq2i |
|
91 |
90
|
biimpri |
|
92 |
28
|
mul02i |
|
93 |
92
|
eqeq2i |
|
94 |
93
|
biimpri |
|
95 |
91 94
|
jca |
|
96 |
79 88 95
|
rspcedvd |
|
97 |
79 84 96
|
rspcedvd |
|
98 |
78 97
|
impbii |
|
99 |
47 48 98
|
3bitr2i |
|
100 |
|
elin |
|
101 |
|
velsn |
|
102 |
99 100 101
|
3bitr4i |
|
103 |
102
|
eqriv |
|
104 |
103
|
a1i |
|
105 |
9 18 19 27 32 104
|
lindsun |
|
106 |
105
|
mptru |
|
107 |
8 106
|
eqeltri |
|
108 |
|
cnfldadd |
|
109 |
10 16
|
sraaddg |
|
110 |
109
|
mptru |
|
111 |
108 110
|
eqtri |
|
112 |
34
|
a1i |
|
113 |
|
1cnd |
|
114 |
28
|
a1i |
|
115 |
24 111 38 4 42 9 112 113 114
|
lspprel |
|
116 |
115
|
mptru |
|
117 |
|
simpl |
|
118 |
117
|
recnd |
|
119 |
|
1cnd |
|
120 |
118 119
|
mulcld |
|
121 |
|
simpr |
|
122 |
121
|
recnd |
|
123 |
28
|
a1i |
|
124 |
122 123
|
mulcld |
|
125 |
120 124
|
addcld |
|
126 |
|
eleq1 |
|
127 |
125 126
|
syl5ibrcom |
|
128 |
127
|
rexlimivv |
|
129 |
|
recl |
|
130 |
|
simpr |
|
131 |
130
|
oveq1d |
|
132 |
131
|
oveq1d |
|
133 |
132
|
eqeq2d |
|
134 |
133
|
rexbidv |
|
135 |
|
imcl |
|
136 |
|
simpr |
|
137 |
136
|
oveq1d |
|
138 |
137
|
oveq2d |
|
139 |
138
|
eqeq2d |
|
140 |
|
replim |
|
141 |
129
|
recnd |
|
142 |
141
|
mulid1d |
|
143 |
135
|
recnd |
|
144 |
28
|
a1i |
|
145 |
143 144
|
mulcomd |
|
146 |
142 145
|
oveq12d |
|
147 |
140 146
|
eqtr4d |
|
148 |
135 139 147
|
rspcedvd |
|
149 |
129 134 148
|
rspcedvd |
|
150 |
128 149
|
impbii |
|
151 |
116 150
|
bitri |
|
152 |
151
|
eqriv |
|
153 |
|
eqid |
|
154 |
24 153 9
|
islbs4 |
|
155 |
107 152 154
|
mpbir2an |
|
156 |
153
|
dimval |
|
157 |
7 155 156
|
mp2an |
|
158 |
|
1nei |
|
159 |
|
hashprg |
|
160 |
20 28 159
|
mp2an |
|
161 |
158 160
|
mpbi |
|
162 |
157 161
|
eqtri |
|
163 |
3 6 162
|
3eqtr2i |
|