Metamath Proof Explorer


Theorem climcndslem2

Description: Lemma for climcnds : bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Hypotheses climcnds.1 φkFk
climcnds.2 φk0Fk
climcnds.3 φkFk+1Fk
climcnds.4 φn0Gn=2nF2n
Assertion climcndslem2 φNseq1+GN2seq1+F2N

Proof

Step Hyp Ref Expression
1 climcnds.1 φkFk
2 climcnds.2 φk0Fk
3 climcnds.3 φkFk+1Fk
4 climcnds.4 φn0Gn=2nF2n
5 fveq2 x=1seq1+Gx=seq1+G1
6 oveq2 x=12x=21
7 2cn 2
8 exp1 221=2
9 7 8 ax-mp 21=2
10 6 9 eqtrdi x=12x=2
11 10 fveq2d x=1seq1+F2x=seq1+F2
12 11 oveq2d x=12seq1+F2x=2seq1+F2
13 5 12 breq12d x=1seq1+Gx2seq1+F2xseq1+G12seq1+F2
14 13 imbi2d x=1φseq1+Gx2seq1+F2xφseq1+G12seq1+F2
15 fveq2 x=jseq1+Gx=seq1+Gj
16 oveq2 x=j2x=2j
17 16 fveq2d x=jseq1+F2x=seq1+F2j
18 17 oveq2d x=j2seq1+F2x=2seq1+F2j
19 15 18 breq12d x=jseq1+Gx2seq1+F2xseq1+Gj2seq1+F2j
20 19 imbi2d x=jφseq1+Gx2seq1+F2xφseq1+Gj2seq1+F2j
21 fveq2 x=j+1seq1+Gx=seq1+Gj+1
22 oveq2 x=j+12x=2j+1
23 22 fveq2d x=j+1seq1+F2x=seq1+F2j+1
24 23 oveq2d x=j+12seq1+F2x=2seq1+F2j+1
25 21 24 breq12d x=j+1seq1+Gx2seq1+F2xseq1+Gj+12seq1+F2j+1
26 25 imbi2d x=j+1φseq1+Gx2seq1+F2xφseq1+Gj+12seq1+F2j+1
27 fveq2 x=Nseq1+Gx=seq1+GN
28 oveq2 x=N2x=2N
29 28 fveq2d x=Nseq1+F2x=seq1+F2N
30 29 oveq2d x=N2seq1+F2x=2seq1+F2N
31 27 30 breq12d x=Nseq1+Gx2seq1+F2xseq1+GN2seq1+F2N
32 31 imbi2d x=Nφseq1+Gx2seq1+F2xφseq1+GN2seq1+F2N
33 fveq2 k=1Fk=F1
34 33 breq2d k=10Fk0F1
35 2 ralrimiva φk0Fk
36 1nn 1
37 36 a1i φ1
38 34 35 37 rspcdva φ0F1
39 fveq2 k=2Fk=F2
40 39 eleq1d k=2FkF2
41 1 ralrimiva φkFk
42 2nn 2
43 42 a1i φ2
44 40 41 43 rspcdva φF2
45 33 eleq1d k=1FkF1
46 45 41 37 rspcdva φF1
47 44 46 addge02d φ0F1F2F1+F2
48 38 47 mpbid φF2F1+F2
49 46 44 readdcld φF1+F2
50 43 nnrpd φ2+
51 44 49 50 lemul2d φF2F1+F22F22F1+F2
52 48 51 mpbid φ2F22F1+F2
53 1z 1
54 fveq2 n=1Gn=G1
55 oveq2 n=12n=21
56 55 9 eqtrdi n=12n=2
57 56 fveq2d n=1F2n=F2
58 56 57 oveq12d n=12nF2n=2F2
59 54 58 eqeq12d n=1Gn=2nF2nG1=2F2
60 4 ralrimiva φn0Gn=2nF2n
61 1nn0 10
62 61 a1i φ10
63 59 60 62 rspcdva φG1=2F2
64 53 63 seq1i φseq1+G1=2F2
65 nnuz =1
66 df-2 2=1+1
67 eqidd φF1=F1
68 53 67 seq1i φseq1+F1=F1
69 eqidd φF2=F2
70 65 37 66 68 69 seqp1d φseq1+F2=F1+F2
71 70 oveq2d φ2seq1+F2=2F1+F2
72 52 64 71 3brtr4d φseq1+G12seq1+F2
73 fveq2 n=j+1Gn=Gj+1
74 oveq2 n=j+12n=2j+1
75 74 fveq2d n=j+1F2n=F2j+1
76 74 75 oveq12d n=j+12nF2n=2j+1F2j+1
77 73 76 eqeq12d n=j+1Gn=2nF2nGj+1=2j+1F2j+1
78 60 adantr φjn0Gn=2nF2n
79 peano2nn jj+1
80 79 adantl φjj+1
81 80 nnnn0d φjj+10
82 77 78 81 rspcdva φjGj+1=2j+1F2j+1
83 nnnn0 jj0
84 83 adantl φjj0
85 expp1 2j02j+1=2j2
86 7 84 85 sylancr φj2j+1=2j2
87 nnexpcl 2j02j
88 42 83 87 sylancr j2j
89 88 adantl φj2j
90 89 nncnd φj2j
91 mulcom 2j22j2=22j
92 90 7 91 sylancl φj2j2=22j
93 86 92 eqtrd φj2j+1=22j
94 93 oveq1d φj2j+1F2j+1=22jF2j+1
95 7 a1i φj2
96 fveq2 k=2j+1Fk=F2j+1
97 96 eleq1d k=2j+1FkF2j+1
98 41 adantr φjkFk
99 nnexpcl 2j+102j+1
100 42 81 99 sylancr φj2j+1
101 97 98 100 rspcdva φjF2j+1
102 101 recnd φjF2j+1
103 95 90 102 mulassd φj22jF2j+1=22jF2j+1
104 82 94 103 3eqtrd φjGj+1=22jF2j+1
105 89 nnnn0d φj2j0
106 hashfz1 2j012j=2j
107 105 106 syl φj12j=2j
108 107 90 eqeltrd φj12j
109 fzfid φj2j+12j+1Fin
110 hashcl 2j+12j+1Fin2j+12j+10
111 109 110 syl φj2j+12j+10
112 111 nn0cnd φj2j+12j+1
113 simpr φjj
114 113 nnzd φjj
115 uzid jjj
116 peano2uz jjj+1j
117 2re 2
118 1le2 12
119 leexp2a 212j+1j2j2j+1
120 117 118 119 mp3an12 j+1j2j2j+1
121 114 115 116 120 4syl φj2j2j+1
122 89 65 eleqtrdi φj2j1
123 100 nnzd φj2j+1
124 elfz5 2j12j+12j12j+12j2j+1
125 122 123 124 syl2anc φj2j12j+12j2j+1
126 121 125 mpbird φj2j12j+1
127 fzsplit 2j12j+112j+1=12j2j+12j+1
128 126 127 syl φj12j+1=12j2j+12j+1
129 128 fveq2d φj12j+1=12j2j+12j+1
130 90 times2d φj2j2=2j+2j
131 86 130 eqtrd φj2j+1=2j+2j
132 100 nnnn0d φj2j+10
133 hashfz1 2j+1012j+1=2j+1
134 132 133 syl φj12j+1=2j+1
135 107 oveq1d φj12j+2j=2j+2j
136 131 134 135 3eqtr4d φj12j+1=12j+2j
137 fzfid φj12jFin
138 89 nnred φj2j
139 138 ltp1d φj2j<2j+1
140 fzdisj 2j<2j+112j2j+12j+1=
141 139 140 syl φj12j2j+12j+1=
142 hashun 12jFin2j+12j+1Fin12j2j+12j+1=12j2j+12j+1=12j+2j+12j+1
143 137 109 141 142 syl3anc φj12j2j+12j+1=12j+2j+12j+1
144 129 136 143 3eqtr3d φj12j+2j=12j+2j+12j+1
145 108 90 112 144 addcanad φj2j=2j+12j+1
146 145 oveq1d φj2jF2j+1=2j+12j+1F2j+1
147 fsumconst 2j+12j+1FinF2j+1k=2j+12j+1F2j+1=2j+12j+1F2j+1
148 109 102 147 syl2anc φjk=2j+12j+1F2j+1=2j+12j+1F2j+1
149 146 148 eqtr4d φj2jF2j+1=k=2j+12j+1F2j+1
150 101 adantr φjk2j+12j+1F2j+1
151 simpl φjφ
152 peano2nn 2j2j+1
153 89 152 syl φj2j+1
154 elfzuz k2j+12j+1k2j+1
155 eluznn 2j+1k2j+1k
156 153 154 155 syl2an φjk2j+12j+1k
157 151 156 1 syl2an2r φjk2j+12j+1Fk
158 elfzuz3 n2j+12j+12j+1n
159 158 adantl φjn2j+12j+12j+1n
160 simplll φjn2j+12j+1kn2j+1φ
161 elfzuz n2j+12j+1n2j+1
162 eluznn 2j+1n2j+1n
163 153 161 162 syl2an φjn2j+12j+1n
164 elfzuz kn2j+1kn
165 eluznn nknk
166 163 164 165 syl2an φjn2j+12j+1kn2j+1k
167 160 166 1 syl2anc φjn2j+12j+1kn2j+1Fk
168 simplll φjn2j+12j+1kn2j+11φ
169 elfzuz kn2j+11kn
170 163 169 165 syl2an φjn2j+12j+1kn2j+11k
171 168 170 3 syl2anc φjn2j+12j+1kn2j+11Fk+1Fk
172 159 167 171 monoord2 φjn2j+12j+1F2j+1Fn
173 172 ralrimiva φjn2j+12j+1F2j+1Fn
174 fveq2 n=kFn=Fk
175 174 breq2d n=kF2j+1FnF2j+1Fk
176 175 rspccva n2j+12j+1F2j+1Fnk2j+12j+1F2j+1Fk
177 173 176 sylan φjk2j+12j+1F2j+1Fk
178 109 150 157 177 fsumle φjk=2j+12j+1F2j+1k=2j+12j+1Fk
179 149 178 eqbrtrd φj2jF2j+1k=2j+12j+1Fk
180 138 101 remulcld φj2jF2j+1
181 109 157 fsumrecl φjk=2j+12j+1Fk
182 2rp 2+
183 182 a1i φj2+
184 180 181 183 lemul2d φj2jF2j+1k=2j+12j+1Fk22jF2j+12k=2j+12j+1Fk
185 179 184 mpbid φj22jF2j+12k=2j+12j+1Fk
186 104 185 eqbrtrd φjGj+12k=2j+12j+1Fk
187 1zzd φ1
188 nnnn0 nn0
189 simpr φn0n0
190 nnexpcl 2n02n
191 42 189 190 sylancr φn02n
192 191 nnred φn02n
193 fveq2 k=2nFk=F2n
194 193 eleq1d k=2nFkF2n
195 41 adantr φn0kFk
196 194 195 191 rspcdva φn0F2n
197 192 196 remulcld φn02nF2n
198 4 197 eqeltrd φn0Gn
199 188 198 sylan2 φnGn
200 65 187 199 serfre φseq1+G:
201 200 ffvelcdmda φjseq1+Gj
202 73 eleq1d n=j+1GnGj+1
203 199 ralrimiva φnGn
204 203 adantr φjnGn
205 202 204 80 rspcdva φjGj+1
206 65 187 1 serfre φseq1+F:
207 ffvelcdm seq1+F:2jseq1+F2j
208 206 88 207 syl2an φjseq1+F2j
209 remulcl 2seq1+F2j2seq1+F2j
210 117 208 209 sylancr φj2seq1+F2j
211 remulcl 2k=2j+12j+1Fk2k=2j+12j+1Fk
212 117 181 211 sylancr φj2k=2j+12j+1Fk
213 le2add seq1+GjGj+12seq1+F2j2k=2j+12j+1Fkseq1+Gj2seq1+F2jGj+12k=2j+12j+1Fkseq1+Gj+Gj+12seq1+F2j+2k=2j+12j+1Fk
214 201 205 210 212 213 syl22anc φjseq1+Gj2seq1+F2jGj+12k=2j+12j+1Fkseq1+Gj+Gj+12seq1+F2j+2k=2j+12j+1Fk
215 186 214 mpan2d φjseq1+Gj2seq1+F2jseq1+Gj+Gj+12seq1+F2j+2k=2j+12j+1Fk
216 113 65 eleqtrdi φjj1
217 seqp1 j1seq1+Gj+1=seq1+Gj+Gj+1
218 216 217 syl φjseq1+Gj+1=seq1+Gj+Gj+1
219 fzfid φj12j+1Fin
220 elfznn k12j+1k
221 1 recnd φkFk
222 151 220 221 syl2an φjk12j+1Fk
223 141 128 219 222 fsumsplit φjk=12j+1Fk=k=12jFk+k=2j+12j+1Fk
224 eqidd φjk12j+1Fk=Fk
225 100 65 eleqtrdi φj2j+11
226 224 225 222 fsumser φjk=12j+1Fk=seq1+F2j+1
227 eqidd φjk12jFk=Fk
228 elfznn k12jk
229 151 228 221 syl2an φjk12jFk
230 227 122 229 fsumser φjk=12jFk=seq1+F2j
231 230 oveq1d φjk=12jFk+k=2j+12j+1Fk=seq1+F2j+k=2j+12j+1Fk
232 223 226 231 3eqtr3d φjseq1+F2j+1=seq1+F2j+k=2j+12j+1Fk
233 232 oveq2d φj2seq1+F2j+1=2seq1+F2j+k=2j+12j+1Fk
234 208 recnd φjseq1+F2j
235 181 recnd φjk=2j+12j+1Fk
236 95 234 235 adddid φj2seq1+F2j+k=2j+12j+1Fk=2seq1+F2j+2k=2j+12j+1Fk
237 233 236 eqtrd φj2seq1+F2j+1=2seq1+F2j+2k=2j+12j+1Fk
238 218 237 breq12d φjseq1+Gj+12seq1+F2j+1seq1+Gj+Gj+12seq1+F2j+2k=2j+12j+1Fk
239 215 238 sylibrd φjseq1+Gj2seq1+F2jseq1+Gj+12seq1+F2j+1
240 239 expcom jφseq1+Gj2seq1+F2jseq1+Gj+12seq1+F2j+1
241 240 a2d jφseq1+Gj2seq1+F2jφseq1+Gj+12seq1+F2j+1
242 14 20 26 32 72 241 nnind Nφseq1+GN2seq1+F2N
243 242 impcom φNseq1+GN2seq1+F2N