Metamath Proof Explorer


Theorem cmetcaulem

Description: Lemma for cmetcau . (Contributed by Mario Carneiro, 14-Oct-2015)

Ref Expression
Hypotheses cmetcau.1 J=MetOpenD
cmetcau.3 φDCMetX
cmetcau.4 φPX
cmetcau.5 φFCauD
cmetcau.6 G=xifxdomFFxP
Assertion cmetcaulem φFdomtJ

Proof

Step Hyp Ref Expression
1 cmetcau.1 J=MetOpenD
2 cmetcau.3 φDCMetX
3 cmetcau.4 φPX
4 cmetcau.5 φFCauD
5 cmetcau.6 G=xifxdomFFxP
6 cmetmet DCMetXDMetX
7 2 6 syl φDMetX
8 metxmet DMetXD∞MetX
9 7 8 syl φD∞MetX
10 1 mopntopon D∞MetXJTopOnX
11 9 10 syl φJTopOnX
12 1z 1
13 nnuz =1
14 13 uzfbas 1fBas
15 12 14 mp1i φfBas
16 fgcl fBasfilGenFil
17 15 16 syl φfilGenFil
18 elfvdm DCMetXXdomCMet
19 2 18 syl φXdomCMet
20 cnex V
21 20 a1i φV
22 caufpm D∞MetXFCauDFX𝑝𝑚
23 9 4 22 syl2anc φFX𝑝𝑚
24 elpm2g XdomCMetVFX𝑝𝑚F:domFXdomF
25 24 simprbda XdomCMetVFX𝑝𝑚F:domFX
26 19 21 23 25 syl21anc φF:domFX
27 26 adantr φxF:domFX
28 27 ffvelcdmda φxxdomFFxX
29 3 ad2antrr φx¬xdomFPX
30 28 29 ifclda φxifxdomFFxPX
31 30 5 fmptd φG:X
32 flfval JTopOnXfilGenFilG:XJfLimffilGenG=JfLimXFilMapGfilGen
33 11 17 31 32 syl3anc φJfLimffilGenG=JfLimXFilMapGfilGen
34 eqid filGen=filGen
35 34 fmfg XdomCMetfBasG:XXFilMapG=XFilMapGfilGen
36 19 15 31 35 syl3anc φXFilMapG=XFilMapGfilGen
37 36 oveq2d φJfLimXFilMapG=JfLimXFilMapGfilGen
38 33 37 eqtr4d φJfLimffilGenG=JfLimXFilMapG
39 biidd z=1jkjkdomFjkjkdomF
40 1zzd φ1
41 13 9 40 iscau3 φFCauDFX𝑝𝑚z+jkjkdomFFkXwkFkDFw<z
42 41 simplbda φFCauDz+jkjkdomFFkXwkFkDFw<z
43 4 42 mpdan φz+jkjkdomFFkXwkFkDFw<z
44 simp1 kdomFFkXwkFkDFw<zkdomF
45 44 ralimi kjkdomFFkXwkFkDFw<zkjkdomF
46 45 reximi jkjkdomFFkXwkFkDFw<zjkjkdomF
47 46 ralimi z+jkjkdomFFkXwkFkDFw<zz+jkjkdomF
48 43 47 syl φz+jkjkdomF
49 1rp 1+
50 49 a1i φ1+
51 39 48 50 rspcdva φjkjkdomF
52 dfss3 jdomFkjkdomF
53 nnsscn
54 31 53 jctir φG:X
55 elpm2r XdomCMetVG:XGX𝑝𝑚
56 19 21 54 55 syl21anc φGX𝑝𝑚
57 56 adantr φjjdomFGX𝑝𝑚
58 eqid j=j
59 9 adantr φjjdomFD∞MetX
60 nnz jj
61 60 ad2antrl φjjdomFj
62 eqidd φjjdomFkjFk=Fk
63 eqidd φjjdomFmjFm=Fm
64 58 59 61 62 63 iscau4 φjjdomFFCauDFX𝑝𝑚z+mjkmkdomFFkXFkDFm<z
65 64 simplbda φjjdomFFCauDz+mjkmkdomFFkXFkDFm<z
66 4 65 mpidan φjjdomFz+mjkmkdomFFkXFkDFm<z
67 simprl φjjdomFj
68 eluznn jmjm
69 67 68 sylan φjjdomFmjm
70 eluznn mkmk
71 5 30 dmmptd φdomG=
72 71 adantr φjjdomFdomG=
73 72 eleq2d φjjdomFkdomGk
74 73 biimpar φjjdomFkkdomG
75 74 a1d φjjdomFkkdomFkdomG
76 idd φjjdomFkFkXFkX
77 idd φjjdomFkFkDFm<zFkDFm<z
78 75 76 77 3anim123d φjjdomFkkdomFFkXFkDFm<zkdomGFkXFkDFm<z
79 70 78 sylan2 φjjdomFmkmkdomFFkXFkDFm<zkdomGFkXFkDFm<z
80 79 anassrs φjjdomFmkmkdomFFkXFkDFm<zkdomGFkXFkDFm<z
81 80 ralimdva φjjdomFmkmkdomFFkXFkDFm<zkmkdomGFkXFkDFm<z
82 69 81 syldan φjjdomFmjkmkdomFFkXFkDFm<zkmkdomGFkXFkDFm<z
83 82 reximdva φjjdomFmjkmkdomFFkXFkDFm<zmjkmkdomGFkXFkDFm<z
84 83 ralimdv φjjdomFz+mjkmkdomFFkXFkDFm<zz+mjkmkdomGFkXFkDFm<z
85 66 84 mpd φjjdomFz+mjkmkdomGFkXFkDFm<z
86 eluznn jkjk
87 67 86 sylan φjjdomFkjk
88 simprr φjjdomFjdomF
89 88 sselda φjjdomFkjkdomF
90 iftrue kdomFifkdomFFkP=Fk
91 90 adantl kkdomFifkdomFFkP=Fk
92 fvex FkV
93 91 92 eqeltrdi kkdomFifkdomFFkPV
94 eleq1w x=kxdomFkdomF
95 fveq2 x=kFx=Fk
96 94 95 ifbieq1d x=kifxdomFFxP=ifkdomFFkP
97 96 5 fvmptg kifkdomFFkPVGk=ifkdomFFkP
98 93 97 syldan kkdomFGk=ifkdomFFkP
99 98 91 eqtrd kkdomFGk=Fk
100 87 89 99 syl2anc φjjdomFkjGk=Fk
101 88 sselda φjjdomFmjmdomF
102 69 101 elind φjjdomFmjmdomF
103 fveq2 k=mGk=Gm
104 fveq2 k=mFk=Fm
105 103 104 eqeq12d k=mGk=FkGm=Fm
106 elin kdomFkkdomF
107 106 99 sylbi kdomFGk=Fk
108 105 107 vtoclga mdomFGm=Fm
109 102 108 syl φjjdomFmjGm=Fm
110 58 59 61 100 109 iscau4 φjjdomFGCauDGX𝑝𝑚z+mjkmkdomGFkXFkDFm<z
111 57 85 110 mpbir2and φjjdomFGCauD
112 111 expr φjjdomFGCauD
113 52 112 biimtrrid φjkjkdomFGCauD
114 113 rexlimdva φjkjkdomFGCauD
115 51 114 mpd φGCauD
116 eqid XFilMapG=XFilMapG
117 13 116 caucfil D∞MetX1G:XGCauDXFilMapGCauFilD
118 9 40 31 117 syl3anc φGCauDXFilMapGCauFilD
119 115 118 mpbid φXFilMapGCauFilD
120 1 cmetcvg DCMetXXFilMapGCauFilDJfLimXFilMapG
121 2 119 120 syl2anc φJfLimXFilMapG
122 38 121 eqnetrd φJfLimffilGenG
123 n0 JfLimffilGenGyyJfLimffilGenG
124 122 123 sylib φyyJfLimffilGenG
125 13 34 lmflf JTopOnX1G:XGtJyyJfLimffilGenG
126 11 40 31 125 syl3anc φGtJyyJfLimffilGenG
127 23 adantr φGtJyFX𝑝𝑚
128 lmcl JTopOnXGtJyyX
129 11 128 sylan φGtJyyX
130 1 9 13 40 lmmbr3 φGtJyGX𝑝𝑚yXz+jkjkdomGGkXGkDy<z
131 130 biimpa φGtJyGX𝑝𝑚yXz+jkjkdomGGkXGkDy<z
132 131 simp3d φGtJyz+jkjkdomGGkXGkDy<z
133 r19.26 z+jkjkdomFjkjkdomGGkXGkDy<zz+jkjkdomFz+jkjkdomGGkXGkDy<z
134 13 rexanuz2 jkjkdomFkdomGGkXGkDy<zjkjkdomFjkjkdomGGkXGkDy<z
135 simprl φkkdomFkdomGGkXGkDy<zkdomF
136 99 ad2ant2lr φkkdomFkdomGGkXGkDy<zGk=Fk
137 simprr2 φkkdomFkdomGGkXGkDy<zGkX
138 136 137 eqeltrrd φkkdomFkdomGGkXGkDy<zFkX
139 136 oveq1d φkkdomFkdomGGkXGkDy<zGkDy=FkDy
140 simprr3 φkkdomFkdomGGkXGkDy<zGkDy<z
141 139 140 eqbrtrrd φkkdomFkdomGGkXGkDy<zFkDy<z
142 135 138 141 3jca φkkdomFkdomGGkXGkDy<zkdomFFkXFkDy<z
143 142 ex φkkdomFkdomGGkXGkDy<zkdomFFkXFkDy<z
144 86 143 sylan2 φjkjkdomFkdomGGkXGkDy<zkdomFFkXFkDy<z
145 144 anassrs φjkjkdomFkdomGGkXGkDy<zkdomFFkXFkDy<z
146 145 ralimdva φjkjkdomFkdomGGkXGkDy<zkjkdomFFkXFkDy<z
147 146 reximdva φjkjkdomFkdomGGkXGkDy<zjkjkdomFFkXFkDy<z
148 134 147 biimtrrid φjkjkdomFjkjkdomGGkXGkDy<zjkjkdomFFkXFkDy<z
149 148 ralimdv φz+jkjkdomFjkjkdomGGkXGkDy<zz+jkjkdomFFkXFkDy<z
150 133 149 biimtrrid φz+jkjkdomFz+jkjkdomGGkXGkDy<zz+jkjkdomFFkXFkDy<z
151 48 150 mpand φz+jkjkdomGGkXGkDy<zz+jkjkdomFFkXFkDy<z
152 151 adantr φGtJyz+jkjkdomGGkXGkDy<zz+jkjkdomFFkXFkDy<z
153 132 152 mpd φGtJyz+jkjkdomFFkXFkDy<z
154 9 adantr φGtJyD∞MetX
155 1zzd φGtJy1
156 1 154 13 155 lmmbr3 φGtJyFtJyFX𝑝𝑚yXz+jkjkdomFFkXFkDy<z
157 127 129 153 156 mpbir3and φGtJyFtJy
158 lmrel ReltJ
159 158 releldmi FtJyFdomtJ
160 157 159 syl φGtJyFdomtJ
161 160 ex φGtJyFdomtJ
162 126 161 sylbird φyJfLimffilGenGFdomtJ
163 162 exlimdv φyyJfLimffilGenGFdomtJ
164 124 163 mpd φFdomtJ