Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Convergence and completeness
cmetcaulem
Next ⟩
cmetcau
Metamath Proof Explorer
Ascii
Unicode
Theorem
cmetcaulem
Description:
Lemma for
cmetcau
.
(Contributed by
Mario Carneiro
, 14-Oct-2015)
Ref
Expression
Hypotheses
cmetcau.1
⊢
J
=
MetOpen
D
cmetcau.3
⊢
φ
→
D
∈
CMet
X
cmetcau.4
⊢
φ
→
P
∈
X
cmetcau.5
⊢
φ
→
F
∈
Cau
D
cmetcau.6
⊢
G
=
x
∈
ℕ
⟼
if
x
∈
dom
F
F
x
P
Assertion
cmetcaulem
⊢
φ
→
F
∈
dom
⇝
t
J
Proof
Step
Hyp
Ref
Expression
1
cmetcau.1
⊢
J
=
MetOpen
D
2
cmetcau.3
⊢
φ
→
D
∈
CMet
X
3
cmetcau.4
⊢
φ
→
P
∈
X
4
cmetcau.5
⊢
φ
→
F
∈
Cau
D
5
cmetcau.6
⊢
G
=
x
∈
ℕ
⟼
if
x
∈
dom
F
F
x
P
6
cmetmet
⊢
D
∈
CMet
X
→
D
∈
Met
X
7
2
6
syl
⊢
φ
→
D
∈
Met
X
8
metxmet
⊢
D
∈
Met
X
→
D
∈
∞Met
X
9
7
8
syl
⊢
φ
→
D
∈
∞Met
X
10
1
mopntopon
⊢
D
∈
∞Met
X
→
J
∈
TopOn
X
11
9
10
syl
⊢
φ
→
J
∈
TopOn
X
12
1z
⊢
1
∈
ℤ
13
nnuz
⊢
ℕ
=
ℤ
≥
1
14
13
uzfbas
⊢
1
∈
ℤ
→
ℤ
≥
ℕ
∈
fBas
ℕ
15
12
14
mp1i
⊢
φ
→
ℤ
≥
ℕ
∈
fBas
ℕ
16
fgcl
⊢
ℤ
≥
ℕ
∈
fBas
ℕ
→
ℕ
filGen
ℤ
≥
ℕ
∈
Fil
ℕ
17
15
16
syl
⊢
φ
→
ℕ
filGen
ℤ
≥
ℕ
∈
Fil
ℕ
18
elfvdm
⊢
D
∈
CMet
X
→
X
∈
dom
CMet
19
2
18
syl
⊢
φ
→
X
∈
dom
CMet
20
cnex
⊢
ℂ
∈
V
21
20
a1i
⊢
φ
→
ℂ
∈
V
22
caufpm
⊢
D
∈
∞Met
X
∧
F
∈
Cau
D
→
F
∈
X
↑
𝑝𝑚
ℂ
23
9
4
22
syl2anc
⊢
φ
→
F
∈
X
↑
𝑝𝑚
ℂ
24
elpm2g
⊢
X
∈
dom
CMet
∧
ℂ
∈
V
→
F
∈
X
↑
𝑝𝑚
ℂ
↔
F
:
dom
F
⟶
X
∧
dom
F
⊆
ℂ
25
24
simprbda
⊢
X
∈
dom
CMet
∧
ℂ
∈
V
∧
F
∈
X
↑
𝑝𝑚
ℂ
→
F
:
dom
F
⟶
X
26
19
21
23
25
syl21anc
⊢
φ
→
F
:
dom
F
⟶
X
27
26
adantr
⊢
φ
∧
x
∈
ℕ
→
F
:
dom
F
⟶
X
28
27
ffvelcdmda
⊢
φ
∧
x
∈
ℕ
∧
x
∈
dom
F
→
F
x
∈
X
29
3
ad2antrr
⊢
φ
∧
x
∈
ℕ
∧
¬
x
∈
dom
F
→
P
∈
X
30
28
29
ifclda
⊢
φ
∧
x
∈
ℕ
→
if
x
∈
dom
F
F
x
P
∈
X
31
30
5
fmptd
⊢
φ
→
G
:
ℕ
⟶
X
32
flfval
⊢
J
∈
TopOn
X
∧
ℕ
filGen
ℤ
≥
ℕ
∈
Fil
ℕ
∧
G
:
ℕ
⟶
X
→
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
=
J
fLim
X
FilMap
G
ℕ
filGen
ℤ
≥
ℕ
33
11
17
31
32
syl3anc
⊢
φ
→
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
=
J
fLim
X
FilMap
G
ℕ
filGen
ℤ
≥
ℕ
34
eqid
⊢
ℕ
filGen
ℤ
≥
ℕ
=
ℕ
filGen
ℤ
≥
ℕ
35
34
fmfg
⊢
X
∈
dom
CMet
∧
ℤ
≥
ℕ
∈
fBas
ℕ
∧
G
:
ℕ
⟶
X
→
X
FilMap
G
ℤ
≥
ℕ
=
X
FilMap
G
ℕ
filGen
ℤ
≥
ℕ
36
19
15
31
35
syl3anc
⊢
φ
→
X
FilMap
G
ℤ
≥
ℕ
=
X
FilMap
G
ℕ
filGen
ℤ
≥
ℕ
37
36
oveq2d
⊢
φ
→
J
fLim
X
FilMap
G
ℤ
≥
ℕ
=
J
fLim
X
FilMap
G
ℕ
filGen
ℤ
≥
ℕ
38
33
37
eqtr4d
⊢
φ
→
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
=
J
fLim
X
FilMap
G
ℤ
≥
ℕ
39
biidd
⊢
z
=
1
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
↔
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
40
1zzd
⊢
φ
→
1
∈
ℤ
41
13
9
40
iscau3
⊢
φ
→
F
∈
Cau
D
↔
F
∈
X
↑
𝑝𝑚
ℂ
∧
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
42
41
simplbda
⊢
φ
∧
F
∈
Cau
D
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
43
4
42
mpdan
⊢
φ
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
44
simp1
⊢
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
→
k
∈
dom
F
45
44
ralimi
⊢
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
→
∀
k
∈
ℤ
≥
j
k
∈
dom
F
46
45
reximi
⊢
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
47
46
ralimi
⊢
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
∀
w
∈
ℤ
≥
k
F
k
D
F
w
<
z
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
48
43
47
syl
⊢
φ
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
49
1rp
⊢
1
∈
ℝ
+
50
49
a1i
⊢
φ
→
1
∈
ℝ
+
51
39
48
50
rspcdva
⊢
φ
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
52
dfss3
⊢
ℤ
≥
j
⊆
dom
F
↔
∀
k
∈
ℤ
≥
j
k
∈
dom
F
53
nnsscn
⊢
ℕ
⊆
ℂ
54
31
53
jctir
⊢
φ
→
G
:
ℕ
⟶
X
∧
ℕ
⊆
ℂ
55
elpm2r
⊢
X
∈
dom
CMet
∧
ℂ
∈
V
∧
G
:
ℕ
⟶
X
∧
ℕ
⊆
ℂ
→
G
∈
X
↑
𝑝𝑚
ℂ
56
19
21
54
55
syl21anc
⊢
φ
→
G
∈
X
↑
𝑝𝑚
ℂ
57
56
adantr
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
G
∈
X
↑
𝑝𝑚
ℂ
58
eqid
⊢
ℤ
≥
j
=
ℤ
≥
j
59
9
adantr
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
D
∈
∞Met
X
60
nnz
⊢
j
∈
ℕ
→
j
∈
ℤ
61
60
ad2antrl
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
j
∈
ℤ
62
eqidd
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℤ
≥
j
→
F
k
=
F
k
63
eqidd
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℤ
≥
j
→
F
m
=
F
m
64
58
59
61
62
63
iscau4
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
F
∈
Cau
D
↔
F
∈
X
↑
𝑝𝑚
ℂ
∧
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
65
64
simplbda
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
F
∈
Cau
D
→
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
66
4
65
mpidan
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
67
simprl
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
j
∈
ℕ
68
eluznn
⊢
j
∈
ℕ
∧
m
∈
ℤ
≥
j
→
m
∈
ℕ
69
67
68
sylan
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℤ
≥
j
→
m
∈
ℕ
70
eluznn
⊢
m
∈
ℕ
∧
k
∈
ℤ
≥
m
→
k
∈
ℕ
71
5
30
dmmptd
⊢
φ
→
dom
G
=
ℕ
72
71
adantr
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
dom
G
=
ℕ
73
72
eleq2d
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
k
∈
dom
G
↔
k
∈
ℕ
74
73
biimpar
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℕ
→
k
∈
dom
G
75
74
a1d
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℕ
→
k
∈
dom
F
→
k
∈
dom
G
76
idd
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℕ
→
F
k
∈
X
→
F
k
∈
X
77
idd
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℕ
→
F
k
D
F
m
<
z
→
F
k
D
F
m
<
z
78
75
76
77
3anim123d
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℕ
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
79
70
78
sylan2
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℕ
∧
k
∈
ℤ
≥
m
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
80
79
anassrs
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℕ
∧
k
∈
ℤ
≥
m
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
81
80
ralimdva
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℕ
→
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
∀
k
∈
ℤ
≥
m
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
82
69
81
syldan
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℤ
≥
j
→
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
∀
k
∈
ℤ
≥
m
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
83
82
reximdva
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
84
83
ralimdv
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
→
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
85
66
84
mpd
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
86
eluznn
⊢
j
∈
ℕ
∧
k
∈
ℤ
≥
j
→
k
∈
ℕ
87
67
86
sylan
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℤ
≥
j
→
k
∈
ℕ
88
simprr
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
ℤ
≥
j
⊆
dom
F
89
88
sselda
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℤ
≥
j
→
k
∈
dom
F
90
iftrue
⊢
k
∈
dom
F
→
if
k
∈
dom
F
F
k
P
=
F
k
91
90
adantl
⊢
k
∈
ℕ
∧
k
∈
dom
F
→
if
k
∈
dom
F
F
k
P
=
F
k
92
fvex
⊢
F
k
∈
V
93
91
92
eqeltrdi
⊢
k
∈
ℕ
∧
k
∈
dom
F
→
if
k
∈
dom
F
F
k
P
∈
V
94
eleq1w
⊢
x
=
k
→
x
∈
dom
F
↔
k
∈
dom
F
95
fveq2
⊢
x
=
k
→
F
x
=
F
k
96
94
95
ifbieq1d
⊢
x
=
k
→
if
x
∈
dom
F
F
x
P
=
if
k
∈
dom
F
F
k
P
97
96
5
fvmptg
⊢
k
∈
ℕ
∧
if
k
∈
dom
F
F
k
P
∈
V
→
G
k
=
if
k
∈
dom
F
F
k
P
98
93
97
syldan
⊢
k
∈
ℕ
∧
k
∈
dom
F
→
G
k
=
if
k
∈
dom
F
F
k
P
99
98
91
eqtrd
⊢
k
∈
ℕ
∧
k
∈
dom
F
→
G
k
=
F
k
100
87
89
99
syl2anc
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
k
∈
ℤ
≥
j
→
G
k
=
F
k
101
88
sselda
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℤ
≥
j
→
m
∈
dom
F
102
69
101
elind
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℤ
≥
j
→
m
∈
ℕ
∩
dom
F
103
fveq2
⊢
k
=
m
→
G
k
=
G
m
104
fveq2
⊢
k
=
m
→
F
k
=
F
m
105
103
104
eqeq12d
⊢
k
=
m
→
G
k
=
F
k
↔
G
m
=
F
m
106
elin
⊢
k
∈
ℕ
∩
dom
F
↔
k
∈
ℕ
∧
k
∈
dom
F
107
106
99
sylbi
⊢
k
∈
ℕ
∩
dom
F
→
G
k
=
F
k
108
105
107
vtoclga
⊢
m
∈
ℕ
∩
dom
F
→
G
m
=
F
m
109
102
108
syl
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
∧
m
∈
ℤ
≥
j
→
G
m
=
F
m
110
58
59
61
100
109
iscau4
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
G
∈
Cau
D
↔
G
∈
X
↑
𝑝𝑚
ℂ
∧
∀
z
∈
ℝ
+
∃
m
∈
ℤ
≥
j
∀
k
∈
ℤ
≥
m
k
∈
dom
G
∧
F
k
∈
X
∧
F
k
D
F
m
<
z
111
57
85
110
mpbir2and
⊢
φ
∧
j
∈
ℕ
∧
ℤ
≥
j
⊆
dom
F
→
G
∈
Cau
D
112
111
expr
⊢
φ
∧
j
∈
ℕ
→
ℤ
≥
j
⊆
dom
F
→
G
∈
Cau
D
113
52
112
biimtrrid
⊢
φ
∧
j
∈
ℕ
→
∀
k
∈
ℤ
≥
j
k
∈
dom
F
→
G
∈
Cau
D
114
113
rexlimdva
⊢
φ
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
→
G
∈
Cau
D
115
51
114
mpd
⊢
φ
→
G
∈
Cau
D
116
eqid
⊢
X
FilMap
G
ℤ
≥
ℕ
=
X
FilMap
G
ℤ
≥
ℕ
117
13
116
caucfil
⊢
D
∈
∞Met
X
∧
1
∈
ℤ
∧
G
:
ℕ
⟶
X
→
G
∈
Cau
D
↔
X
FilMap
G
ℤ
≥
ℕ
∈
CauFil
D
118
9
40
31
117
syl3anc
⊢
φ
→
G
∈
Cau
D
↔
X
FilMap
G
ℤ
≥
ℕ
∈
CauFil
D
119
115
118
mpbid
⊢
φ
→
X
FilMap
G
ℤ
≥
ℕ
∈
CauFil
D
120
1
cmetcvg
⊢
D
∈
CMet
X
∧
X
FilMap
G
ℤ
≥
ℕ
∈
CauFil
D
→
J
fLim
X
FilMap
G
ℤ
≥
ℕ
≠
∅
121
2
119
120
syl2anc
⊢
φ
→
J
fLim
X
FilMap
G
ℤ
≥
ℕ
≠
∅
122
38
121
eqnetrd
⊢
φ
→
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
≠
∅
123
n0
⊢
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
≠
∅
↔
∃
y
y
∈
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
124
122
123
sylib
⊢
φ
→
∃
y
y
∈
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
125
13
34
lmflf
⊢
J
∈
TopOn
X
∧
1
∈
ℤ
∧
G
:
ℕ
⟶
X
→
G
⇝
t
J
y
↔
y
∈
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
126
11
40
31
125
syl3anc
⊢
φ
→
G
⇝
t
J
y
↔
y
∈
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
127
23
adantr
⊢
φ
∧
G
⇝
t
J
y
→
F
∈
X
↑
𝑝𝑚
ℂ
128
lmcl
⊢
J
∈
TopOn
X
∧
G
⇝
t
J
y
→
y
∈
X
129
11
128
sylan
⊢
φ
∧
G
⇝
t
J
y
→
y
∈
X
130
1
9
13
40
lmmbr3
⊢
φ
→
G
⇝
t
J
y
↔
G
∈
X
↑
𝑝𝑚
ℂ
∧
y
∈
X
∧
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
131
130
biimpa
⊢
φ
∧
G
⇝
t
J
y
→
G
∈
X
↑
𝑝𝑚
ℂ
∧
y
∈
X
∧
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
132
131
simp3d
⊢
φ
∧
G
⇝
t
J
y
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
133
r19.26
⊢
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
↔
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
134
13
rexanuz2
⊢
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
↔
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
135
simprl
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
k
∈
dom
F
136
99
ad2ant2lr
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
G
k
=
F
k
137
simprr2
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
G
k
∈
X
138
136
137
eqeltrrd
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
F
k
∈
X
139
136
oveq1d
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
G
k
D
y
=
F
k
D
y
140
simprr3
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
G
k
D
y
<
z
141
139
140
eqbrtrrd
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
F
k
D
y
<
z
142
135
138
141
3jca
⊢
φ
∧
k
∈
ℕ
∧
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
143
142
ex
⊢
φ
∧
k
∈
ℕ
→
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
144
86
143
sylan2
⊢
φ
∧
j
∈
ℕ
∧
k
∈
ℤ
≥
j
→
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
145
144
anassrs
⊢
φ
∧
j
∈
ℕ
∧
k
∈
ℤ
≥
j
→
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
146
145
ralimdva
⊢
φ
∧
j
∈
ℕ
→
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
147
146
reximdva
⊢
φ
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
148
134
147
biimtrrid
⊢
φ
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
149
148
ralimdv
⊢
φ
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
150
133
149
biimtrrid
⊢
φ
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
151
48
150
mpand
⊢
φ
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
152
151
adantr
⊢
φ
∧
G
⇝
t
J
y
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
G
∧
G
k
∈
X
∧
G
k
D
y
<
z
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
153
132
152
mpd
⊢
φ
∧
G
⇝
t
J
y
→
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
154
9
adantr
⊢
φ
∧
G
⇝
t
J
y
→
D
∈
∞Met
X
155
1zzd
⊢
φ
∧
G
⇝
t
J
y
→
1
∈
ℤ
156
1
154
13
155
lmmbr3
⊢
φ
∧
G
⇝
t
J
y
→
F
⇝
t
J
y
↔
F
∈
X
↑
𝑝𝑚
ℂ
∧
y
∈
X
∧
∀
z
∈
ℝ
+
∃
j
∈
ℕ
∀
k
∈
ℤ
≥
j
k
∈
dom
F
∧
F
k
∈
X
∧
F
k
D
y
<
z
157
127
129
153
156
mpbir3and
⊢
φ
∧
G
⇝
t
J
y
→
F
⇝
t
J
y
158
lmrel
⊢
Rel
⇝
t
J
159
158
releldmi
⊢
F
⇝
t
J
y
→
F
∈
dom
⇝
t
J
160
157
159
syl
⊢
φ
∧
G
⇝
t
J
y
→
F
∈
dom
⇝
t
J
161
160
ex
⊢
φ
→
G
⇝
t
J
y
→
F
∈
dom
⇝
t
J
162
126
161
sylbird
⊢
φ
→
y
∈
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
→
F
∈
dom
⇝
t
J
163
162
exlimdv
⊢
φ
→
∃
y
y
∈
J
fLimf
ℕ
filGen
ℤ
≥
ℕ
G
→
F
∈
dom
⇝
t
J
164
124
163
mpd
⊢
φ
→
F
∈
dom
⇝
t
J