Metamath Proof Explorer


Theorem cycpmco2lem4

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2lem4 φMWM⟨“IJ”⟩I=MUI

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 1 2 3 4 5 6 7 8 cycpmco2lem1 φMWM⟨“IJ”⟩I=MWJ
10 3 adantr φE0..^WDV
11 ssrab2 wWordD|w:domw1-1DWordD
12 eqid BaseS=BaseS
13 1 2 12 tocycf DVM:wWordD|w:domw1-1DBaseS
14 3 13 syl φM:wWordD|w:domw1-1DBaseS
15 14 fdmd φdomM=wWordD|w:domw1-1D
16 4 15 eleqtrd φWwWordD|w:domw1-1D
17 11 16 sselid φWWordD
18 5 eldifad φID
19 18 s1cld φ⟨“I”⟩WordD
20 splcl WWordD⟨“I”⟩WordDWspliceEE⟨“I”⟩WordD
21 17 19 20 syl2anc φWspliceEE⟨“I”⟩WordD
22 8 21 eqeltrid φUWordD
23 22 adantr φE0..^WUWordD
24 1 2 3 4 5 6 7 8 cycpmco2f1 φU:domU1-1D
25 24 adantr φE0..^WU:domU1-1D
26 simpr φE0..^WE0..^W
27 1 2 3 4 5 6 7 8 cycpmco2lem3 φU1=W
28 27 oveq2d φ0..^U1=0..^W
29 28 adantr φE0..^W0..^U1=0..^W
30 26 29 eleqtrrd φE0..^WE0..^U1
31 1 10 23 25 30 cycpmfv1 φE0..^WMUUE=UE+1
32 1 2 3 4 5 6 7 8 cycpmco2lem2 φUE=I
33 32 fveq2d φMUUE=MUI
34 33 adantr φE0..^WMUUE=MUI
35 17 adantr φE0..^WWWordD
36 lencl WWordDW0
37 17 36 syl φW0
38 nn0fz0 W0W0W
39 37 38 sylib φW0W
40 39 adantr φE0..^WW0W
41 swrdfv0 WWordDE0..^WW0WWsubstrEW0=WE
42 35 26 40 41 syl3anc φE0..^WWsubstrEW0=WE
43 ovexd φW-1J+1V
44 7 43 eqeltrid φEV
45 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
46 4 44 44 19 45 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
47 8 46 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
48 47 fveq1d φUE+1=WprefixE++⟨“I”⟩++WsubstrEWE+1
49 48 adantr φE0..^WUE+1=WprefixE++⟨“I”⟩++WsubstrEWE+1
50 pfxcl WWordDWprefixEWordD
51 17 50 syl φWprefixEWordD
52 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
53 51 19 52 syl2anc φWprefixE++⟨“I”⟩WordD
54 53 adantr φE0..^WWprefixE++⟨“I”⟩WordD
55 swrdcl WWordDWsubstrEWWordD
56 17 55 syl φWsubstrEWWordD
57 56 adantr φE0..^WWsubstrEWWordD
58 1z 1
59 fzoaddel E0..^W1E+10+1..^W+1
60 58 59 mpan2 E0..^WE+10+1..^W+1
61 elfzolt2b E+10+1..^W+1E+1E+1..^W+1
62 60 61 syl E0..^WE+1E+1..^W+1
63 62 adantl φE0..^WE+1E+1..^W+1
64 ccatws1len WprefixEWordDWprefixE++⟨“I”⟩=WprefixE+1
65 51 64 syl φWprefixE++⟨“I”⟩=WprefixE+1
66 id w=Ww=W
67 dmeq w=Wdomw=domW
68 eqidd w=WD=D
69 66 67 68 f1eq123d w=Ww:domw1-1DW:domW1-1D
70 69 elrab3 WWordDWwWordD|w:domw1-1DW:domW1-1D
71 70 biimpa WWordDWwWordD|w:domw1-1DW:domW1-1D
72 17 16 71 syl2anc φW:domW1-1D
73 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
74 72 73 syl φW-1:ranW1-1 ontodomW
75 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
76 74 75 syl φW-1:ranWdomW
77 76 6 ffvelcdmd φW-1JdomW
78 wrddm WWordDdomW=0..^W
79 17 78 syl φdomW=0..^W
80 77 79 eleqtrd φW-1J0..^W
81 fzofzp1 W-1J0..^WW-1J+10W
82 80 81 syl φW-1J+10W
83 7 82 eqeltrid φE0W
84 pfxlen WWordDE0WWprefixE=E
85 17 83 84 syl2anc φWprefixE=E
86 85 oveq1d φWprefixE+1=E+1
87 65 86 eqtrd φWprefixE++⟨“I”⟩=E+1
88 87 adantr φE0..^WWprefixE++⟨“I”⟩=E+1
89 47 fveq2d φU=WprefixE++⟨“I”⟩++WsubstrEW
90 ccatlen WprefixE++⟨“I”⟩WordDWsubstrEWWordDWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
91 53 56 90 syl2anc φWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
92 swrdlen WWordDE0WW0WWsubstrEW=WE
93 17 83 39 92 syl3anc φWsubstrEW=WE
94 87 93 oveq12d φWprefixE++⟨“I”⟩+WsubstrEW=E+1+WE
95 89 91 94 3eqtrd φU=E+1+WE
96 fz0ssnn0 0W0
97 96 83 sselid φE0
98 97 nn0zd φE
99 98 peano2zd φE+1
100 99 zcnd φE+1
101 37 nn0cnd φW
102 97 nn0cnd φE
103 100 101 102 addsubassd φE+1+W-E=E+1+WE
104 1cnd φ1
105 102 104 101 addassd φE+1+W=E+1+W
106 105 oveq1d φE+1+W-E=E+1+W-E
107 95 103 106 3eqtr2d φU=E+1+W-E
108 104 101 addcld φ1+W
109 102 108 pncan2d φE+1+W-E=1+W
110 104 101 addcomd φ1+W=W+1
111 107 109 110 3eqtrd φU=W+1
112 89 111 91 3eqtr3rd φWprefixE++⟨“I”⟩+WsubstrEW=W+1
113 112 adantr φE0..^WWprefixE++⟨“I”⟩+WsubstrEW=W+1
114 88 113 oveq12d φE0..^WWprefixE++⟨“I”⟩..^WprefixE++⟨“I”⟩+WsubstrEW=E+1..^W+1
115 63 114 eleqtrrd φE0..^WE+1WprefixE++⟨“I”⟩..^WprefixE++⟨“I”⟩+WsubstrEW
116 ccatval2 WprefixE++⟨“I”⟩WordDWsubstrEWWordDE+1WprefixE++⟨“I”⟩..^WprefixE++⟨“I”⟩+WsubstrEWWprefixE++⟨“I”⟩++WsubstrEWE+1=WsubstrEWE+1-WprefixE++⟨“I”⟩
117 54 57 115 116 syl3anc φE0..^WWprefixE++⟨“I”⟩++WsubstrEWE+1=WsubstrEWE+1-WprefixE++⟨“I”⟩
118 87 oveq2d φE+1-WprefixE++⟨“I”⟩=E+1-E+1
119 100 subidd φE+1-E+1=0
120 118 119 eqtrd φE+1-WprefixE++⟨“I”⟩=0
121 120 fveq2d φWsubstrEWE+1-WprefixE++⟨“I”⟩=WsubstrEW0
122 121 adantr φE0..^WWsubstrEWE+1-WprefixE++⟨“I”⟩=WsubstrEW0
123 49 117 122 3eqtrd φE0..^WUE+1=WsubstrEW0
124 7 fveq2i WE=WW-1J+1
125 124 a1i φE0..^WWE=WW-1J+1
126 72 adantr φE0..^WW:domW1-1D
127 7 oveq1i E1=W-1J+1-1
128 elfzonn0 W-1J0..^WW-1J0
129 80 128 syl φW-1J0
130 129 nn0cnd φW-1J
131 130 104 pncand φW-1J+1-1=W-1J
132 127 131 eqtr2id φW-1J=E1
133 132 adantr φE0..^WW-1J=E1
134 nn0p1gt0 W-1J00<W-1J+1
135 129 134 syl φ0<W-1J+1
136 135 7 breqtrrdi φ0<E
137 136 gt0ne0d φE0
138 137 adantr φE0..^WE0
139 fzo1fzo0n0 E1..^WE0..^WE0
140 26 138 139 sylanbrc φE0..^WE1..^W
141 elfzo1elm1fzo0 E1..^WE10..^W1
142 140 141 syl φE0..^WE10..^W1
143 133 142 eqeltrd φE0..^WW-1J0..^W1
144 1 10 35 126 143 cycpmfv1 φE0..^WMWWW-1J=WW-1J+1
145 f1f1orn W:domW1-1DW:domW1-1 ontoranW
146 72 145 syl φW:domW1-1 ontoranW
147 f1ocnvfv2 W:domW1-1 ontoranWJranWWW-1J=J
148 146 6 147 syl2anc φWW-1J=J
149 148 fveq2d φMWWW-1J=MWJ
150 149 adantr φE0..^WMWWW-1J=MWJ
151 125 144 150 3eqtr2rd φE0..^WMWJ=WE
152 42 123 151 3eqtr4d φE0..^WUE+1=MWJ
153 31 34 152 3eqtr3rd φE0..^WMWJ=MUI
154 149 adantr φE=WMWWW-1J=MWJ
155 3 adantr φE=WDV
156 17 adantr φE=WWWordD
157 72 adantr φE=WW:domW1-1D
158 136 adantr φE=W0<E
159 simpr φE=WE=W
160 158 159 breqtrd φE=W0<W
161 oveq1 E=WE1=W1
162 132 161 sylan9eq φE=WW-1J=W1
163 1 155 156 157 160 162 cycpmfv2 φE=WMWWW-1J=W0
164 154 163 eqtr3d φE=WMWJ=W0
165 22 adantr φE=WUWordD
166 24 adantr φE=WU:domU1-1D
167 nn0p1gt0 W00<W+1
168 37 167 syl φ0<W+1
169 168 111 breqtrrd φ0<U
170 169 adantr φE=W0<U
171 27 adantr φE=WU1=W
172 159 171 eqtr4d φE=WE=U1
173 1 155 165 166 170 172 cycpmfv2 φE=WMUUE=U0
174 47 fveq1d φU0=WprefixE++⟨“I”⟩++WsubstrEW0
175 174 adantr φE=WU0=WprefixE++⟨“I”⟩++WsubstrEW0
176 nn0p1nn E0E+1
177 97 176 syl φE+1
178 lbfzo0 00..^E+1E+1
179 177 178 sylibr φ00..^E+1
180 87 oveq2d φ0..^WprefixE++⟨“I”⟩=0..^E+1
181 179 180 eleqtrrd φ00..^WprefixE++⟨“I”⟩
182 ccatval1 WprefixE++⟨“I”⟩WordDWsubstrEWWordD00..^WprefixE++⟨“I”⟩WprefixE++⟨“I”⟩++WsubstrEW0=WprefixE++⟨“I”⟩0
183 53 56 181 182 syl3anc φWprefixE++⟨“I”⟩++WsubstrEW0=WprefixE++⟨“I”⟩0
184 nn0p1nn W-1J0W-1J+1
185 129 184 syl φW-1J+1
186 7 185 eqeltrid φE
187 lbfzo0 00..^EE
188 186 187 sylibr φ00..^E
189 85 oveq2d φ0..^WprefixE=0..^E
190 188 189 eleqtrrd φ00..^WprefixE
191 ccatval1 WprefixEWordD⟨“I”⟩WordD00..^WprefixEWprefixE++⟨“I”⟩0=WprefixE0
192 51 19 190 191 syl3anc φWprefixE++⟨“I”⟩0=WprefixE0
193 fzne1 E0WE0E0+1W
194 83 137 193 syl2anc φE0+1W
195 0p1e1 0+1=1
196 195 oveq1i 0+1W=1W
197 194 196 eleqtrdi φE1W
198 pfxfv0 WWordDE1WWprefixE0=W0
199 17 197 198 syl2anc φWprefixE0=W0
200 183 192 199 3eqtrd φWprefixE++⟨“I”⟩++WsubstrEW0=W0
201 200 adantr φE=WWprefixE++⟨“I”⟩++WsubstrEW0=W0
202 173 175 201 3eqtrd φE=WMUUE=W0
203 33 adantr φE=WMUUE=MUI
204 164 202 203 3eqtr2d φE=WMWJ=MUI
205 elfzr E0WE0..^WE=W
206 83 205 syl φE0..^WE=W
207 153 204 206 mpjaodan φMWJ=MUI
208 9 207 eqtrd φMWM⟨“IJ”⟩I=MUI