| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihjatcclem.b |  | 
						
							| 2 |  | dihjatcclem.l |  | 
						
							| 3 |  | dihjatcclem.h |  | 
						
							| 4 |  | dihjatcclem.j |  | 
						
							| 5 |  | dihjatcclem.m |  | 
						
							| 6 |  | dihjatcclem.a |  | 
						
							| 7 |  | dihjatcclem.u |  | 
						
							| 8 |  | dihjatcclem.s |  | 
						
							| 9 |  | dihjatcclem.i |  | 
						
							| 10 |  | dihjatcclem.v |  | 
						
							| 11 |  | dihjatcclem.k |  | 
						
							| 12 |  | dihjatcclem.p |  | 
						
							| 13 |  | dihjatcclem.q |  | 
						
							| 14 |  | dihjatcc.w |  | 
						
							| 15 |  | dihjatcc.t |  | 
						
							| 16 |  | dihjatcc.r |  | 
						
							| 17 |  | dihjatcc.e |  | 
						
							| 18 |  | dihjatcc.g |  | 
						
							| 19 |  | dihjatcc.dd |  | 
						
							| 20 |  | dihjatcc.n |  | 
						
							| 21 |  | dihjatcc.o |  | 
						
							| 22 |  | dihjatcc.d |  | 
						
							| 23 | 3 9 | dihvalrel |  | 
						
							| 24 | 11 23 | syl |  | 
						
							| 25 | 11 | adantr |  | 
						
							| 26 | 2 6 3 14 | lhpocnel2 |  | 
						
							| 27 | 11 26 | syl |  | 
						
							| 28 | 2 6 3 15 18 | ltrniotacl |  | 
						
							| 29 | 11 27 12 28 | syl3anc |  | 
						
							| 30 | 2 6 3 15 19 | ltrniotacl |  | 
						
							| 31 | 11 27 13 30 | syl3anc |  | 
						
							| 32 | 3 15 | ltrncnv |  | 
						
							| 33 | 11 31 32 | syl2anc |  | 
						
							| 34 | 3 15 | ltrnco |  | 
						
							| 35 | 11 29 33 34 | syl3anc |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | simprll |  | 
						
							| 38 |  | simprlr |  | 
						
							| 39 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | dihjatcclem3 |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 38 40 | breqtrrd |  | 
						
							| 42 | 2 3 15 16 17 | tendoex |  | 
						
							| 43 | 25 36 37 41 42 | syl121anc |  | 
						
							| 44 |  | df-rex |  | 
						
							| 45 | 43 44 | sylib |  | 
						
							| 46 |  | eqidd |  | 
						
							| 47 |  | simprl |  | 
						
							| 48 | 11 | ad2antrr |  | 
						
							| 49 | 12 | ad2antrr |  | 
						
							| 50 |  | fvex |  | 
						
							| 51 |  | vex |  | 
						
							| 52 | 2 6 3 14 15 17 9 18 50 51 | dihopelvalcqat |  | 
						
							| 53 | 48 49 52 | syl2anc |  | 
						
							| 54 | 46 47 53 | mpbir2and |  | 
						
							| 55 |  | eqidd |  | 
						
							| 56 | 3 15 17 20 | tendoicl |  | 
						
							| 57 | 48 47 56 | syl2anc |  | 
						
							| 58 | 13 | ad2antrr |  | 
						
							| 59 |  | fvex |  | 
						
							| 60 |  | fvex |  | 
						
							| 61 | 2 6 3 14 15 17 9 19 59 60 | dihopelvalcqat |  | 
						
							| 62 | 48 58 61 | syl2anc |  | 
						
							| 63 | 55 57 62 | mpbir2and |  | 
						
							| 64 | 29 | ad2antrr |  | 
						
							| 65 | 33 | ad2antrr |  | 
						
							| 66 | 3 15 17 | tendospdi1 |  | 
						
							| 67 | 48 47 64 65 66 | syl13anc |  | 
						
							| 68 |  | simprr |  | 
						
							| 69 | 31 | ad2antrr |  | 
						
							| 70 | 20 15 | tendoi2 |  | 
						
							| 71 | 47 69 70 | syl2anc |  | 
						
							| 72 | 3 15 17 | tendocnv |  | 
						
							| 73 | 48 47 69 72 | syl3anc |  | 
						
							| 74 | 71 73 | eqtr2d |  | 
						
							| 75 | 74 | coeq2d |  | 
						
							| 76 | 67 68 75 | 3eqtr3d |  | 
						
							| 77 |  | simplrr |  | 
						
							| 78 | 3 15 17 20 1 22 21 | tendoipl2 |  | 
						
							| 79 | 48 47 78 | syl2anc |  | 
						
							| 80 | 77 79 | eqtr4d |  | 
						
							| 81 |  | opeq1 |  | 
						
							| 82 | 81 | eleq1d |  | 
						
							| 83 | 82 | anbi1d |  | 
						
							| 84 |  | coeq1 |  | 
						
							| 85 | 84 | eqeq2d |  | 
						
							| 86 | 85 | anbi1d |  | 
						
							| 87 | 83 86 | anbi12d |  | 
						
							| 88 |  | opeq1 |  | 
						
							| 89 | 88 | eleq1d |  | 
						
							| 90 | 89 | anbi2d |  | 
						
							| 91 |  | coeq2 |  | 
						
							| 92 | 91 | eqeq2d |  | 
						
							| 93 | 92 | anbi1d |  | 
						
							| 94 | 90 93 | anbi12d |  | 
						
							| 95 |  | opeq2 |  | 
						
							| 96 | 95 | eleq1d |  | 
						
							| 97 | 96 | anbi2d |  | 
						
							| 98 |  | oveq2 |  | 
						
							| 99 | 98 | eqeq2d |  | 
						
							| 100 | 99 | anbi2d |  | 
						
							| 101 | 97 100 | anbi12d |  | 
						
							| 102 | 87 94 101 | syl3an9b |  | 
						
							| 103 | 102 | spc3egv |  | 
						
							| 104 | 50 59 60 103 | mp3an |  | 
						
							| 105 | 54 63 76 80 104 | syl22anc |  | 
						
							| 106 | 105 | ex |  | 
						
							| 107 | 106 | eximdv |  | 
						
							| 108 |  | excom |  | 
						
							| 109 | 107 108 | imbitrdi |  | 
						
							| 110 | 45 109 | mpd |  | 
						
							| 111 | 110 | ex |  | 
						
							| 112 | 11 | simpld |  | 
						
							| 113 | 112 | hllatd |  | 
						
							| 114 | 12 | simpld |  | 
						
							| 115 | 13 | simpld |  | 
						
							| 116 | 1 4 6 | hlatjcl |  | 
						
							| 117 | 112 114 115 116 | syl3anc |  | 
						
							| 118 | 11 | simprd |  | 
						
							| 119 | 1 3 | lhpbase |  | 
						
							| 120 | 118 119 | syl |  | 
						
							| 121 | 1 5 | latmcl |  | 
						
							| 122 | 113 117 120 121 | syl3anc |  | 
						
							| 123 | 10 122 | eqeltrid |  | 
						
							| 124 | 1 2 5 | latmle2 |  | 
						
							| 125 | 113 117 120 124 | syl3anc |  | 
						
							| 126 | 10 125 | eqbrtrid |  | 
						
							| 127 |  | eqid |  | 
						
							| 128 | 1 2 3 9 127 | dihvalb |  | 
						
							| 129 | 11 123 126 128 | syl12anc |  | 
						
							| 130 | 129 | eleq2d |  | 
						
							| 131 | 1 2 3 15 16 21 127 | dibopelval3 |  | 
						
							| 132 | 11 123 126 131 | syl12anc |  | 
						
							| 133 | 130 132 | bitrd |  | 
						
							| 134 |  | eqid |  | 
						
							| 135 | 1 6 | atbase |  | 
						
							| 136 | 114 135 | syl |  | 
						
							| 137 | 1 6 | atbase |  | 
						
							| 138 | 115 137 | syl |  | 
						
							| 139 | 1 3 15 17 22 7 134 8 9 11 136 138 | dihopellsm |  | 
						
							| 140 | 111 133 139 | 3imtr4d |  | 
						
							| 141 | 24 140 | relssdv |  |