Metamath Proof Explorer


Theorem dvfsum2

Description: The reverse of dvfsumrlim , when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016)

Ref Expression
Hypotheses dvfsum2.s S=T+∞
dvfsum2.z Z=M
dvfsum2.m φM
dvfsum2.d φD
dvfsum2.u φU*
dvfsum2.md φMD+1
dvfsum2.t φT
dvfsum2.a φxSA
dvfsum2.b1 φxSBV
dvfsum2.b2 φxZB
dvfsum2.b3 φdxSAdx=xSB
dvfsum2.c x=kB=C
dvfsum2.l φxSkSDxxkkUBC
dvfsum2.g G=xSk=MxCA
dvfsum2.0 φxSDx0B
dvfsum2.1 φXS
dvfsum2.2 φYS
dvfsum2.3 φDX
dvfsum2.4 φXY
dvfsum2.5 φYU
dvfsum2.e x=YB=E
Assertion dvfsum2 φGYGXE

Proof

Step Hyp Ref Expression
1 dvfsum2.s S=T+∞
2 dvfsum2.z Z=M
3 dvfsum2.m φM
4 dvfsum2.d φD
5 dvfsum2.u φU*
6 dvfsum2.md φMD+1
7 dvfsum2.t φT
8 dvfsum2.a φxSA
9 dvfsum2.b1 φxSBV
10 dvfsum2.b2 φxZB
11 dvfsum2.b3 φdxSAdx=xSB
12 dvfsum2.c x=kB=C
13 dvfsum2.l φxSkSDxxkkUBC
14 dvfsum2.g G=xSk=MxCA
15 dvfsum2.0 φxSDx0B
16 dvfsum2.1 φXS
17 dvfsum2.2 φYS
18 dvfsum2.3 φDX
19 dvfsum2.4 φXY
20 dvfsum2.5 φYU
21 dvfsum2.e x=YB=E
22 fzfid φMYFin
23 10 ralrimiva φxZB
24 elfzuz kMYkM
25 24 2 eleqtrrdi kMYkZ
26 12 eleq1d x=kBC
27 26 rspccva xZBkZC
28 23 25 27 syl2an φkMYC
29 22 28 fsumrecl φk=MYC
30 8 ralrimiva φxSA
31 nfcsb1v _xY/xA
32 31 nfel1 xY/xA
33 csbeq1a x=YA=Y/xA
34 33 eleq1d x=YAY/xA
35 32 34 rspc YSxSAY/xA
36 17 30 35 sylc φY/xA
37 29 36 resubcld φk=MYCY/xA
38 nfcv _xY
39 nfcv _xk=MYC
40 nfcv _x
41 39 40 31 nfov _xk=MYCY/xA
42 fveq2 x=Yx=Y
43 42 oveq2d x=YMx=MY
44 43 sumeq1d x=Yk=MxC=k=MYC
45 44 33 oveq12d x=Yk=MxCA=k=MYCY/xA
46 38 41 45 14 fvmptf YSk=MYCY/xAGY=k=MYCY/xA
47 17 37 46 syl2anc φGY=k=MYCY/xA
48 fzfid φMXFin
49 elfzuz kMXkM
50 49 2 eleqtrrdi kMXkZ
51 23 50 27 syl2an φkMXC
52 48 51 fsumrecl φk=MXC
53 nfcsb1v _xX/xA
54 53 nfel1 xX/xA
55 csbeq1a x=XA=X/xA
56 55 eleq1d x=XAX/xA
57 54 56 rspc XSxSAX/xA
58 16 30 57 sylc φX/xA
59 52 58 resubcld φk=MXCX/xA
60 nfcv _xX
61 nfcv _xk=MXC
62 61 40 53 nfov _xk=MXCX/xA
63 fveq2 x=Xx=X
64 63 oveq2d x=XMx=MX
65 64 sumeq1d x=Xk=MxC=k=MXC
66 65 55 oveq12d x=Xk=MxCA=k=MXCX/xA
67 60 62 66 14 fvmptf XSk=MXCX/xAGX=k=MXCX/xA
68 16 59 67 syl2anc φGX=k=MXCX/xA
69 47 68 oveq12d φGYGX=k=MYC-Y/xA-k=MXCX/xA
70 69 fveq2d φGYGX=k=MYC-Y/xA-k=MXCX/xA
71 37 recnd φk=MYCY/xA
72 59 recnd φk=MXCX/xA
73 71 72 abssubd φk=MYC-Y/xA-k=MXCX/xA=k=MXC-X/xA-k=MYCY/xA
74 70 73 eqtrd φGYGX=k=MXC-X/xA-k=MYCY/xA
75 ioossre T+∞
76 1 75 eqsstri S
77 76 a1i φS
78 77 8 9 11 dvmptrecl φxSB
79 78 ralrimiva φxSB
80 21 eleq1d x=YBE
81 80 rspcv YSxSBE
82 17 79 81 sylc φE
83 37 82 resubcld φk=MYC-Y/xA-E
84 76 16 sselid φX
85 reflcl XX
86 84 85 syl φX
87 84 86 resubcld φXX
88 nfv mB
89 nfcsb1v _xm/xB
90 89 nfel1 xm/xB
91 csbeq1a x=mB=m/xB
92 91 eleq1d x=mBm/xB
93 88 90 92 cbvralw xSBmSm/xB
94 79 93 sylib φmSm/xB
95 csbeq1 m=Xm/xB=X/xB
96 95 eleq1d m=Xm/xBX/xB
97 96 rspcv XSmSm/xBX/xB
98 16 94 97 sylc φX/xB
99 87 98 remulcld φXXX/xB
100 99 59 readdcld φXXX/xB+k=MXC-X/xA
101 100 98 resubcld φXXX/xB+k=MXCX/xA-X/xB
102 76 17 sselid φY
103 reflcl YY
104 102 103 syl φY
105 102 104 resubcld φYY
106 105 82 remulcld φYYE
107 106 37 readdcld φYYE+k=MYC-Y/xA
108 107 82 resubcld φYYE+k=MYCY/xA-E
109 fracge0 Y0YY
110 102 109 syl φ0YY
111 15 expr φxSDx0B
112 111 ralrimiva φxSDx0B
113 4 84 102 18 19 letrd φDY
114 breq2 x=YDxDY
115 21 breq2d x=Y0B0E
116 114 115 imbi12d x=YDx0BDY0E
117 116 rspcv YSxSDx0BDY0E
118 17 112 113 117 syl3c φ0E
119 105 82 110 118 mulge0d φ0YYE
120 37 106 addge02d φ0YYEk=MYCY/xAYYE+k=MYC-Y/xA
121 119 120 mpbid φk=MYCY/xAYYE+k=MYC-Y/xA
122 37 107 82 121 lesub1dd φk=MYC-Y/xA-EYYE+k=MYCY/xA-E
123 8 renegcld φxSA
124 78 renegcld φxSB
125 10 renegcld φxZB
126 reelprrecn
127 126 a1i φ
128 8 recnd φxSA
129 127 128 9 11 dvmptneg φdxSAdx=xSB
130 12 negeqd x=kB=C
131 78 adantrr φxSkSB
132 131 3adant3 φxSkSDxxkkUB
133 simp2r φxSkSDxxkkUkS
134 79 3ad2ant1 φxSkSDxxkkUxSB
135 26 rspcv kSxSBC
136 133 134 135 sylc φxSkSDxxkkUC
137 132 136 lenegd φxSkSDxxkkUBCCB
138 13 137 mpbid φxSkSDxxkkUCB
139 eqid xSxxB+k=MxC-A=xSxxB+k=MxC-A
140 1 2 3 4 6 7 123 124 125 129 130 5 138 139 16 17 18 19 20 dvfsumlem3 φxSxxB+k=MxC-AYxSxxB+k=MxC-AXxSxxB+k=MxC-AXX/xBxSxxB+k=MxC-AYY/xB
141 140 simprd φxSxxB+k=MxC-AXX/xBxSxxB+k=MxC-AYY/xB
142 87 recnd φXX
143 98 recnd φX/xB
144 142 143 mulneg2d φXXX/xB=XXX/xB
145 52 recnd φk=MXC
146 58 recnd φX/xA
147 145 146 neg2subd φ-k=MXC-X/xA=X/xAk=MXC
148 51 recnd φkMXC
149 48 148 fsumneg φk=MXC=k=MXC
150 149 oveq1d φk=MXCX/xA=-k=MXC-X/xA
151 145 146 negsubdi2d φk=MXCX/xA=X/xAk=MXC
152 147 150 151 3eqtr4d φk=MXCX/xA=k=MXCX/xA
153 144 152 oveq12d φXXX/xB+k=MXC-X/xA=-XXX/xB+k=MXCX/xA
154 99 recnd φXXX/xB
155 154 72 negdid φXXX/xB+k=MXC-X/xA=-XXX/xB+k=MXCX/xA
156 153 155 eqtr4d φXXX/xB+k=MXC-X/xA=XXX/xB+k=MXC-X/xA
157 100 renegcld φXXX/xB+k=MXC-X/xA
158 156 157 eqeltrd φXXX/xB+k=MXC-X/xA
159 nfcv _xXX
160 nfcv _x×
161 nfcsb1v _xX/xB
162 161 nfneg _xX/xB
163 159 160 162 nfov _xXXX/xB
164 nfcv _x+
165 nfcv _xk=MXC
166 53 nfneg _xX/xA
167 165 40 166 nfov _xk=MXCX/xA
168 163 164 167 nfov _xXXX/xB+k=MXC-X/xA
169 id x=Xx=X
170 169 63 oveq12d x=Xxx=XX
171 csbeq1a x=XB=X/xB
172 171 negeqd x=XB=X/xB
173 170 172 oveq12d x=XxxB=XXX/xB
174 64 sumeq1d x=Xk=MxC=k=MXC
175 55 negeqd x=XA=X/xA
176 174 175 oveq12d x=Xk=MxCA=k=MXCX/xA
177 173 176 oveq12d x=XxxB+k=MxC-A=XXX/xB+k=MXC-X/xA
178 60 168 177 139 fvmptf XSXXX/xB+k=MXC-X/xAxSxxB+k=MxC-AX=XXX/xB+k=MXC-X/xA
179 16 158 178 syl2anc φxSxxB+k=MxC-AX=XXX/xB+k=MXC-X/xA
180 179 156 eqtrd φxSxxB+k=MxC-AX=XXX/xB+k=MXC-X/xA
181 csbnegg XSX/xB=X/xB
182 16 181 syl φX/xB=X/xB
183 180 182 oveq12d φxSxxB+k=MxC-AXX/xB=-XXX/xB+k=MXC-X/xA-X/xB
184 105 recnd φYY
185 82 recnd φE
186 184 185 mulneg2d φYYE=YYE
187 29 recnd φk=MYC
188 36 recnd φY/xA
189 187 188 neg2subd φ-k=MYC-Y/xA=Y/xAk=MYC
190 28 recnd φkMYC
191 22 190 fsumneg φk=MYC=k=MYC
192 191 oveq1d φk=MYCY/xA=-k=MYC-Y/xA
193 187 188 negsubdi2d φk=MYCY/xA=Y/xAk=MYC
194 189 192 193 3eqtr4d φk=MYCY/xA=k=MYCY/xA
195 186 194 oveq12d φYYE+k=MYC-Y/xA=-YYE+k=MYCY/xA
196 106 recnd φYYE
197 196 71 negdid φYYE+k=MYC-Y/xA=-YYE+k=MYCY/xA
198 195 197 eqtr4d φYYE+k=MYC-Y/xA=YYE+k=MYC-Y/xA
199 107 renegcld φYYE+k=MYC-Y/xA
200 198 199 eqeltrd φYYE+k=MYC-Y/xA
201 nfcv _xYYE
202 nfcv _xk=MYC
203 31 nfneg _xY/xA
204 202 40 203 nfov _xk=MYCY/xA
205 201 164 204 nfov _xYYE+k=MYC-Y/xA
206 id x=Yx=Y
207 206 42 oveq12d x=Yxx=YY
208 21 negeqd x=YB=E
209 207 208 oveq12d x=YxxB=YYE
210 43 sumeq1d x=Yk=MxC=k=MYC
211 33 negeqd x=YA=Y/xA
212 210 211 oveq12d x=Yk=MxCA=k=MYCY/xA
213 209 212 oveq12d x=YxxB+k=MxC-A=YYE+k=MYC-Y/xA
214 38 205 213 139 fvmptf YSYYE+k=MYC-Y/xAxSxxB+k=MxC-AY=YYE+k=MYC-Y/xA
215 17 200 214 syl2anc φxSxxB+k=MxC-AY=YYE+k=MYC-Y/xA
216 215 198 eqtrd φxSxxB+k=MxC-AY=YYE+k=MYC-Y/xA
217 208 adantl φx=YB=E
218 17 217 csbied φY/xB=E
219 216 218 oveq12d φxSxxB+k=MxC-AYY/xB=-YYE+k=MYC-Y/xA-E
220 141 183 219 3brtr3d φ-XXX/xB+k=MXC-X/xA-X/xB-YYE+k=MYC-Y/xA-E
221 100 recnd φXXX/xB+k=MXC-X/xA
222 221 143 neg2subd φ-XXX/xB+k=MXC-X/xA-X/xB=X/xBXXX/xB+k=MXC-X/xA
223 107 recnd φYYE+k=MYC-Y/xA
224 223 185 neg2subd φ-YYE+k=MYC-Y/xA-E=EYYE+k=MYC-Y/xA
225 220 222 224 3brtr3d φX/xBXXX/xB+k=MXC-X/xAEYYE+k=MYC-Y/xA
226 221 143 negsubdi2d φXXX/xB+k=MXCX/xA-X/xB=X/xBXXX/xB+k=MXC-X/xA
227 223 185 negsubdi2d φYYE+k=MYCY/xA-E=EYYE+k=MYC-Y/xA
228 225 226 227 3brtr4d φXXX/xB+k=MXCX/xA-X/xBYYE+k=MYCY/xA-E
229 108 101 lenegd φYYE+k=MYCY/xA-EXXX/xB+k=MXCX/xA-X/xBXXX/xB+k=MXCX/xA-X/xBYYE+k=MYCY/xA-E
230 228 229 mpbird φYYE+k=MYCY/xA-EXXX/xB+k=MXCX/xA-X/xB
231 83 108 101 122 230 letrd φk=MYC-Y/xA-EXXX/xB+k=MXCX/xA-X/xB
232 1red φ1
233 nfv xDX
234 nfcv _x0
235 nfcv _x
236 234 235 161 nfbr x0X/xB
237 233 236 nfim xDX0X/xB
238 breq2 x=XDxDX
239 171 breq2d x=X0B0X/xB
240 238 239 imbi12d x=XDx0BDX0X/xB
241 237 240 rspc XSxSDx0BDX0X/xB
242 16 112 18 241 syl3c φ0X/xB
243 fracle1 XXX1
244 84 243 syl φXX1
245 87 232 98 242 244 lemul1ad φXXX/xB1X/xB
246 143 mullidd φ1X/xB=X/xB
247 245 246 breqtrd φXXX/xBX/xB
248 99 98 59 247 leadd1dd φXXX/xB+k=MXC-X/xAX/xB+k=MXC-X/xA
249 100 98 59 lesubadd2d φXXX/xB+k=MXCX/xA-X/xBk=MXCX/xAXXX/xB+k=MXC-X/xAX/xB+k=MXC-X/xA
250 248 249 mpbird φXXX/xB+k=MXCX/xA-X/xBk=MXCX/xA
251 83 101 59 231 250 letrd φk=MYC-Y/xA-Ek=MXCX/xA
252 37 82 readdcld φk=MYC-Y/xA+E
253 fracge0 X0XX
254 84 253 syl φ0XX
255 87 98 254 242 mulge0d φ0XXX/xB
256 59 99 addge02d φ0XXX/xBk=MXCX/xAXXX/xB+k=MXC-X/xA
257 255 256 mpbid φk=MXCX/xAXXX/xB+k=MXC-X/xA
258 140 simpld φxSxxB+k=MxC-AYxSxxB+k=MxC-AX
259 258 216 180 3brtr3d φYYE+k=MYC-Y/xAXXX/xB+k=MXC-X/xA
260 100 107 lenegd φXXX/xB+k=MXC-X/xAYYE+k=MYC-Y/xAYYE+k=MYC-Y/xAXXX/xB+k=MXC-X/xA
261 259 260 mpbird φXXX/xB+k=MXC-X/xAYYE+k=MYC-Y/xA
262 fracle1 YYY1
263 102 262 syl φYY1
264 105 232 82 118 263 lemul1ad φYYE1E
265 185 mullidd φ1E=E
266 264 265 breqtrd φYYEE
267 106 82 37 266 leadd1dd φYYE+k=MYC-Y/xAE+k=MYC-Y/xA
268 185 71 addcomd φE+k=MYC-Y/xA=k=MYC-Y/xA+E
269 267 268 breqtrd φYYE+k=MYC-Y/xAk=MYC-Y/xA+E
270 100 107 252 261 269 letrd φXXX/xB+k=MXC-X/xAk=MYC-Y/xA+E
271 59 100 252 257 270 letrd φk=MXCX/xAk=MYC-Y/xA+E
272 59 37 82 absdifled φk=MXC-X/xA-k=MYCY/xAEk=MYC-Y/xA-Ek=MXCX/xAk=MXCX/xAk=MYC-Y/xA+E
273 251 271 272 mpbir2and φk=MXC-X/xA-k=MYCY/xAE
274 74 273 eqbrtrd φGYGXE