Metamath Proof Explorer


Theorem esumrnmpt2

Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020)

Ref Expression
Hypotheses esumrnmpt2.1 y = B C = D
esumrnmpt2.2 φ A V
esumrnmpt2.3 φ k A D 0 +∞
esumrnmpt2.4 φ k A B W
esumrnmpt2.5 φ k A B = D = 0
esumrnmpt2.6 φ Disj k A B
Assertion esumrnmpt2 φ * y ran k A B C = * k A D

Proof

Step Hyp Ref Expression
1 esumrnmpt2.1 y = B C = D
2 esumrnmpt2.2 φ A V
3 esumrnmpt2.3 φ k A D 0 +∞
4 esumrnmpt2.4 φ k A B W
5 esumrnmpt2.5 φ k A B = D = 0
6 esumrnmpt2.6 φ Disj k A B
7 nfrab1 _ k k A | ¬ B =
8 ssrab2 k A | ¬ B = A
9 8 a1i φ k A | ¬ B = A
10 2 9 ssexd φ k A | ¬ B = V
11 9 sselda φ k k A | ¬ B = k A
12 11 3 syldan φ k k A | ¬ B = D 0 +∞
13 11 4 syldan φ k k A | ¬ B = B W
14 rabid k k A | ¬ B = k A ¬ B =
15 14 simprbi k k A | ¬ B = ¬ B =
16 15 adantl φ k k A | ¬ B = ¬ B =
17 elsng B W B B =
18 13 17 syl φ k k A | ¬ B = B B =
19 16 18 mtbird φ k k A | ¬ B = ¬ B
20 13 19 eldifd φ k k A | ¬ B = B W
21 nfcv _ k A
22 7 21 disjss1f k A | ¬ B = A Disj k A B Disj k k A | ¬ B = B
23 9 6 22 sylc φ Disj k k A | ¬ B = B
24 7 1 10 12 20 23 esumrnmpt φ * y ran k k A | ¬ B = B C = * k k A | ¬ B = D
25 nfv y φ k A B =
26 snex V
27 26 a1i φ k A B = V
28 velsn y y =
29 28 biimpi y y =
30 29 adantl φ k A B = y y =
31 nfv k φ
32 nfre1 k k A B =
33 31 32 nfan k φ k A B =
34 nfv k y =
35 33 34 nfan k φ k A B = y =
36 nfv k C = 0
37 simpllr φ k A B = y = k A B = y =
38 simpr φ k A B = y = k A B = B =
39 37 38 eqtr4d φ k A B = y = k A B = y = B
40 39 1 syl φ k A B = y = k A B = C = D
41 simp-4l φ k A B = y = k A B = φ
42 simplr φ k A B = y = k A B = k A
43 41 42 38 5 syl21anc φ k A B = y = k A B = D = 0
44 40 43 eqtrd φ k A B = y = k A B = C = 0
45 simplr φ k A B = y = k A B =
46 35 36 44 45 r19.29af2 φ k A B = y = C = 0
47 30 46 syldan φ k A B = y C = 0
48 0e0iccpnf 0 0 +∞
49 47 48 eqeltrdi φ k A B = y C 0 +∞
50 nfcv _ k y
51 nfmpt1 _ k k k A | B = B
52 51 nfrn _ k ran k k A | B = B
53 50 52 nfel k y ran k k A | B = B
54 31 53 nfan k φ y ran k k A | B = B
55 simpr φ y ran k k A | B = B k k A | B = y = B y = B
56 rabid k k A | B = k A B =
57 56 simprbi k k A | B = B =
58 57 ad2antlr φ y ran k k A | B = B k k A | B = y = B B =
59 55 58 eqtrd φ y ran k k A | B = B k k A | B = y = B y =
60 59 28 sylibr φ y ran k k A | B = B k k A | B = y = B y
61 vex y V
62 eqid k k A | B = B = k k A | B = B
63 62 elrnmpt y V y ran k k A | B = B k k A | B = y = B
64 61 63 ax-mp y ran k k A | B = B k k A | B = y = B
65 64 biimpi y ran k k A | B = B k k A | B = y = B
66 65 adantl φ y ran k k A | B = B k k A | B = y = B
67 54 60 66 r19.29af φ y ran k k A | B = B y
68 67 ex φ y ran k k A | B = B y
69 68 ssrdv φ ran k k A | B = B
70 69 adantr φ k A B = ran k k A | B = B
71 25 27 49 70 esummono φ k A B = * y ran k k A | B = B C * y C
72 0ex V
73 72 a1i φ k A B = V
74 48 a1i φ k A B = 0 0 +∞
75 46 73 74 esumsn φ k A B = * y C = 0
76 71 75 breqtrd φ k A B = * y ran k k A | B = B C 0
77 simpr φ ¬ k A B = ¬ k A B =
78 nfv y ¬ k A B =
79 32 nfn k ¬ k A B =
80 rabn0 k A | B = k A B =
81 80 biimpi k A | B = k A B =
82 81 necon1bi ¬ k A B = k A | B = =
83 eqid B = B
84 83 a1i ¬ k A B = B = B
85 79 82 84 mpteq12df ¬ k A B = k k A | B = B = k B
86 mpt0 k B =
87 85 86 eqtrdi ¬ k A B = k k A | B = B =
88 87 rneqd ¬ k A B = ran k k A | B = B = ran
89 rn0 ran =
90 88 89 eqtrdi ¬ k A B = ran k k A | B = B =
91 78 90 esumeq1d ¬ k A B = * y ran k k A | B = B C = * y C
92 esumnul * y C = 0
93 91 92 eqtrdi ¬ k A B = * y ran k k A | B = B C = 0
94 0le0 0 0
95 93 94 eqbrtrdi ¬ k A B = * y ran k k A | B = B C 0
96 77 95 syl φ ¬ k A B = * y ran k k A | B = B C 0
97 76 96 pm2.61dan φ * y ran k k A | B = B C 0
98 ssrab2 k A | B = A
99 98 a1i φ k A | B = A
100 2 99 ssexd φ k A | B = V
101 nfrab1 _ k k A | B =
102 101 mptexgf k A | B = V k k A | B = B V
103 rnexg k k A | B = B V ran k k A | B = B V
104 100 102 103 3syl φ ran k k A | B = B V
105 1 adantl φ y ran k k A | B = B k k A | B = y = B C = D
106 simplll φ y ran k k A | B = B k k A | B = y = B φ
107 99 sselda φ k k A | B = k A
108 107 adantlr φ y ran k k A | B = B k k A | B = k A
109 108 adantr φ y ran k k A | B = B k k A | B = y = B k A
110 106 109 3 syl2anc φ y ran k k A | B = B k k A | B = y = B D 0 +∞
111 105 110 eqeltrd φ y ran k k A | B = B k k A | B = y = B C 0 +∞
112 54 111 66 r19.29af φ y ran k k A | B = B C 0 +∞
113 112 ralrimiva φ y ran k k A | B = B C 0 +∞
114 nfcv _ y ran k k A | B = B
115 114 esumcl ran k k A | B = B V y ran k k A | B = B C 0 +∞ * y ran k k A | B = B C 0 +∞
116 104 113 115 syl2anc φ * y ran k k A | B = B C 0 +∞
117 elxrge0 * y ran k k A | B = B C 0 +∞ * y ran k k A | B = B C * 0 * y ran k k A | B = B C
118 117 simprbi * y ran k k A | B = B C 0 +∞ 0 * y ran k k A | B = B C
119 116 118 syl φ 0 * y ran k k A | B = B C
120 97 119 jca φ * y ran k k A | B = B C 0 0 * y ran k k A | B = B C
121 iccssxr 0 +∞ *
122 121 116 sselid φ * y ran k k A | B = B C *
123 121 48 sselii 0 *
124 123 a1i φ 0 *
125 xrletri3 * y ran k k A | B = B C * 0 * * y ran k k A | B = B C = 0 * y ran k k A | B = B C 0 0 * y ran k k A | B = B C
126 122 124 125 syl2anc φ * y ran k k A | B = B C = 0 * y ran k k A | B = B C 0 0 * y ran k k A | B = B C
127 120 126 mpbird φ * y ran k k A | B = B C = 0
128 127 oveq1d φ * y ran k k A | B = B C + 𝑒 * y ran k k A | ¬ B = B C = 0 + 𝑒 * y ran k k A | ¬ B = B C
129 12 ralrimiva φ k k A | ¬ B = D 0 +∞
130 7 esumcl k A | ¬ B = V k k A | ¬ B = D 0 +∞ * k k A | ¬ B = D 0 +∞
131 10 129 130 syl2anc φ * k k A | ¬ B = D 0 +∞
132 121 131 sselid φ * k k A | ¬ B = D *
133 24 132 eqeltrd φ * y ran k k A | ¬ B = B C *
134 xaddid2 * y ran k k A | ¬ B = B C * 0 + 𝑒 * y ran k k A | ¬ B = B C = * y ran k k A | ¬ B = B C
135 133 134 syl φ 0 + 𝑒 * y ran k k A | ¬ B = B C = * y ran k k A | ¬ B = B C
136 128 135 eqtrd φ * y ran k k A | B = B C + 𝑒 * y ran k k A | ¬ B = B C = * y ran k k A | ¬ B = B C
137 simpl φ k k A | B = φ
138 57 adantl φ k k A | B = B =
139 137 107 138 5 syl21anc φ k k A | B = D = 0
140 139 ralrimiva φ k k A | B = D = 0
141 31 140 esumeq2d φ * k k A | B = D = * k k A | B = 0
142 101 esum0 k A | B = V * k k A | B = 0 = 0
143 100 142 syl φ * k k A | B = 0 = 0
144 141 143 eqtrd φ * k k A | B = D = 0
145 144 oveq1d φ * k k A | B = D + 𝑒 * k k A | ¬ B = D = 0 + 𝑒 * k k A | ¬ B = D
146 xaddid2 * k k A | ¬ B = D * 0 + 𝑒 * k k A | ¬ B = D = * k k A | ¬ B = D
147 132 146 syl φ 0 + 𝑒 * k k A | ¬ B = D = * k k A | ¬ B = D
148 145 147 eqtrd φ * k k A | B = D + 𝑒 * k k A | ¬ B = D = * k k A | ¬ B = D
149 24 136 148 3eqtr4d φ * y ran k k A | B = B C + 𝑒 * y ran k k A | ¬ B = B C = * k k A | B = D + 𝑒 * k k A | ¬ B = D
150 nfv y φ
151 nfcv _ y ran k k A | ¬ B = B
152 7 mptexgf k A | ¬ B = V k k A | ¬ B = B V
153 rnexg k k A | ¬ B = B V ran k k A | ¬ B = B V
154 10 152 153 3syl φ ran k k A | ¬ B = B V
155 69 ssrind φ ran k k A | B = B ran k k A | ¬ B = B ran k k A | ¬ B = B
156 incom ran k k A | ¬ B = B = ran k k A | ¬ B = B
157 15 neqned k k A | ¬ B = B
158 157 necomd k k A | ¬ B = B
159 158 neneqd k k A | ¬ B = ¬ = B
160 159 nrex ¬ k k A | ¬ B = = B
161 eqid k k A | ¬ B = B = k k A | ¬ B = B
162 161 elrnmpt V ran k k A | ¬ B = B k k A | ¬ B = = B
163 72 162 ax-mp ran k k A | ¬ B = B k k A | ¬ B = = B
164 160 163 mtbir ¬ ran k k A | ¬ B = B
165 disjsn ran k k A | ¬ B = B = ¬ ran k k A | ¬ B = B
166 164 165 mpbir ran k k A | ¬ B = B =
167 156 166 eqtr3i ran k k A | ¬ B = B =
168 155 167 sseqtrdi φ ran k k A | B = B ran k k A | ¬ B = B
169 ss0 ran k k A | B = B ran k k A | ¬ B = B ran k k A | B = B ran k k A | ¬ B = B =
170 168 169 syl φ ran k k A | B = B ran k k A | ¬ B = B =
171 nfmpt1 _ k k k A | ¬ B = B
172 171 nfrn _ k ran k k A | ¬ B = B
173 50 172 nfel k y ran k k A | ¬ B = B
174 31 173 nfan k φ y ran k k A | ¬ B = B
175 1 adantl φ y ran k k A | ¬ B = B k k A | ¬ B = y = B C = D
176 simplll φ y ran k k A | ¬ B = B k k A | ¬ B = y = B φ
177 11 adantlr φ y ran k k A | ¬ B = B k k A | ¬ B = k A
178 177 adantr φ y ran k k A | ¬ B = B k k A | ¬ B = y = B k A
179 176 178 3 syl2anc φ y ran k k A | ¬ B = B k k A | ¬ B = y = B D 0 +∞
180 175 179 eqeltrd φ y ran k k A | ¬ B = B k k A | ¬ B = y = B C 0 +∞
181 161 elrnmpt y V y ran k k A | ¬ B = B k k A | ¬ B = y = B
182 61 181 ax-mp y ran k k A | ¬ B = B k k A | ¬ B = y = B
183 182 biimpi y ran k k A | ¬ B = B k k A | ¬ B = y = B
184 183 adantl φ y ran k k A | ¬ B = B k k A | ¬ B = y = B
185 174 180 184 r19.29af φ y ran k k A | ¬ B = B C 0 +∞
186 150 114 151 104 154 170 112 185 esumsplit φ * y ran k k A | B = B ran k k A | ¬ B = B C = * y ran k k A | B = B C + 𝑒 * y ran k k A | ¬ B = B C
187 rabnc k A | B = k A | ¬ B = =
188 187 a1i φ k A | B = k A | ¬ B = =
189 107 3 syldan φ k k A | B = D 0 +∞
190 31 101 7 100 10 188 189 12 esumsplit φ * k k A | B = k A | ¬ B = D = * k k A | B = D + 𝑒 * k k A | ¬ B = D
191 149 186 190 3eqtr4d φ * y ran k k A | B = B ran k k A | ¬ B = B C = * k k A | B = k A | ¬ B = D
192 rabxm A = k A | B = k A | ¬ B =
193 192 83 mpteq12i k A B = k k A | B = k A | ¬ B = B
194 mptun k k A | B = k A | ¬ B = B = k k A | B = B k k A | ¬ B = B
195 193 194 eqtri k A B = k k A | B = B k k A | ¬ B = B
196 195 rneqi ran k A B = ran k k A | B = B k k A | ¬ B = B
197 rnun ran k k A | B = B k k A | ¬ B = B = ran k k A | B = B ran k k A | ¬ B = B
198 196 197 eqtri ran k A B = ran k k A | B = B ran k k A | ¬ B = B
199 198 a1i φ ran k A B = ran k k A | B = B ran k k A | ¬ B = B
200 150 199 esumeq1d φ * y ran k A B C = * y ran k k A | B = B ran k k A | ¬ B = B C
201 192 a1i φ A = k A | B = k A | ¬ B =
202 31 201 esumeq1d φ * k A D = * k k A | B = k A | ¬ B = D
203 191 200 202 3eqtr4d φ * y ran k A B C = * k A D