| Step | Hyp | Ref | Expression | 
						
							| 1 |  | heibor.1 |  | 
						
							| 2 | 1 | heibor1 |  | 
						
							| 3 |  | cmetmet |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | metxmet |  | 
						
							| 6 | 1 | mopntop |  | 
						
							| 7 | 3 5 6 | 3syl |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | istotbnd |  | 
						
							| 10 | 9 | simprbi |  | 
						
							| 11 |  | 2nn |  | 
						
							| 12 |  | nnexpcl |  | 
						
							| 13 | 11 12 | mpan |  | 
						
							| 14 | 13 | nnrpd |  | 
						
							| 15 | 14 | rpreccld |  | 
						
							| 16 |  | oveq2 |  | 
						
							| 17 | 16 | eqeq2d |  | 
						
							| 18 | 17 | rexbidv |  | 
						
							| 19 | 18 | ralbidv |  | 
						
							| 20 | 19 | anbi2d |  | 
						
							| 21 | 20 | rexbidv |  | 
						
							| 22 | 21 | rspccva |  | 
						
							| 23 | 10 15 22 | syl2an |  | 
						
							| 24 | 23 | expcom |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | oveq1 |  | 
						
							| 27 | 26 | eqeq2d |  | 
						
							| 28 | 27 | ac6sfi |  | 
						
							| 29 | 28 | adantrl |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 |  | simp3l |  | 
						
							| 32 | 31 | frnd |  | 
						
							| 33 | 1 | mopnuni |  | 
						
							| 34 | 3 5 33 | 3syl |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 35 | 3ad2ant1 |  | 
						
							| 37 | 32 36 | sseqtrd |  | 
						
							| 38 | 1 | fvexi |  | 
						
							| 39 | 38 | uniex |  | 
						
							| 40 | 39 | elpw2 |  | 
						
							| 41 | 37 40 | sylibr |  | 
						
							| 42 |  | simp2l |  | 
						
							| 43 |  | ffn |  | 
						
							| 44 |  | dffn4 |  | 
						
							| 45 | 43 44 | sylib |  | 
						
							| 46 |  | fofi |  | 
						
							| 47 | 45 46 | sylan2 |  | 
						
							| 48 | 42 31 47 | syl2anc |  | 
						
							| 49 | 41 48 | elind |  | 
						
							| 50 | 26 | eleq2d |  | 
						
							| 51 | 50 | rexrn |  | 
						
							| 52 |  | eliun |  | 
						
							| 53 |  | eliun |  | 
						
							| 54 | 51 52 53 | 3bitr4g |  | 
						
							| 55 | 54 | eqrdv |  | 
						
							| 56 | 31 43 55 | 3syl |  | 
						
							| 57 |  | simp3r |  | 
						
							| 58 |  | uniiun |  | 
						
							| 59 |  | iuneq2 |  | 
						
							| 60 | 58 59 | eqtrid |  | 
						
							| 61 | 57 60 | syl |  | 
						
							| 62 |  | simp2r |  | 
						
							| 63 | 56 61 62 | 3eqtr2rd |  | 
						
							| 64 |  | iuneq1 |  | 
						
							| 65 | 64 | rspceeqv |  | 
						
							| 66 | 49 63 65 | syl2anc |  | 
						
							| 67 | 66 | 3expia |  | 
						
							| 68 | 67 | adantrrr |  | 
						
							| 69 | 68 | exlimdv |  | 
						
							| 70 | 30 69 | mpd |  | 
						
							| 71 | 70 | rexlimdvaa |  | 
						
							| 72 | 25 71 | syld |  | 
						
							| 73 | 72 | ralrimdva |  | 
						
							| 74 | 39 | pwex |  | 
						
							| 75 | 74 | inex1 |  | 
						
							| 76 |  | nn0ennn |  | 
						
							| 77 |  | nnenom |  | 
						
							| 78 | 76 77 | entri |  | 
						
							| 79 |  | iuneq1 |  | 
						
							| 80 | 79 | eqeq2d |  | 
						
							| 81 | 75 78 80 | axcc4 |  | 
						
							| 82 | 73 81 | syl6 |  | 
						
							| 83 |  | elpwi |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 |  | eqid |  | 
						
							| 87 |  | simpl |  | 
						
							| 88 | 34 | pweqd |  | 
						
							| 89 | 88 | ineq1d |  | 
						
							| 90 | 89 | feq3d |  | 
						
							| 91 | 90 | biimpar |  | 
						
							| 92 | 91 | adantrr |  | 
						
							| 93 |  | oveq1 |  | 
						
							| 94 | 93 | cbviunv |  | 
						
							| 95 |  | id |  | 
						
							| 96 |  | inss1 |  | 
						
							| 97 | 96 88 | sseqtrrid |  | 
						
							| 98 |  | fss |  | 
						
							| 99 | 95 97 98 | syl2anr |  | 
						
							| 100 | 99 | ffvelcdmda |  | 
						
							| 101 | 100 | elpwid |  | 
						
							| 102 | 101 | sselda |  | 
						
							| 103 |  | simplr |  | 
						
							| 104 |  | oveq1 |  | 
						
							| 105 |  | oveq2 |  | 
						
							| 106 | 105 | oveq2d |  | 
						
							| 107 | 106 | oveq2d |  | 
						
							| 108 |  | ovex |  | 
						
							| 109 | 104 107 86 108 | ovmpo |  | 
						
							| 110 | 102 103 109 | syl2anc |  | 
						
							| 111 | 110 | iuneq2dv |  | 
						
							| 112 | 94 111 | eqtrid |  | 
						
							| 113 | 112 | eqeq2d |  | 
						
							| 114 | 113 | biimprd |  | 
						
							| 115 | 114 | ralimdva |  | 
						
							| 116 | 115 | impr |  | 
						
							| 117 |  | fveq2 |  | 
						
							| 118 | 117 | iuneq1d |  | 
						
							| 119 |  | simpl |  | 
						
							| 120 | 119 | oveq2d |  | 
						
							| 121 | 120 | iuneq2dv |  | 
						
							| 122 | 118 121 | eqtrd |  | 
						
							| 123 | 122 | eqeq2d |  | 
						
							| 124 | 123 | cbvralvw |  | 
						
							| 125 | 116 124 | sylib |  | 
						
							| 126 | 1 84 85 86 87 92 125 | heiborlem10 |  | 
						
							| 127 | 126 | exp32 |  | 
						
							| 128 | 83 127 | syl5 |  | 
						
							| 129 | 128 | ralrimiv |  | 
						
							| 130 | 129 | ex |  | 
						
							| 131 | 130 | exlimdv |  | 
						
							| 132 | 82 131 | syld |  | 
						
							| 133 | 132 | imp |  | 
						
							| 134 |  | eqid |  | 
						
							| 135 | 134 | iscmp |  | 
						
							| 136 | 8 133 135 | sylanbrc |  | 
						
							| 137 | 4 136 | jca |  | 
						
							| 138 | 2 137 | impbii |  |