Metamath Proof Explorer


Theorem iseraltlem2

Description: Lemma for iseralt . The terms of an alternating series form a chain of inequalities in alternate terms, so that for example S ( 1 ) <_ S ( 3 ) <_ S ( 5 ) <_ ... and ... <_ S ( 4 ) <_ S ( 2 ) <_ S ( 0 ) (assuming M = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses iseralt.1 Z=M
iseralt.2 φM
iseralt.3 φG:Z
iseralt.4 φkZGk+1Gk
iseralt.5 φG0
iseralt.6 φkZFk=1kGk
Assertion iseraltlem2 φNZK01NseqM+FN+2K1NseqM+FN

Proof

Step Hyp Ref Expression
1 iseralt.1 Z=M
2 iseralt.2 φM
3 iseralt.3 φG:Z
4 iseralt.4 φkZGk+1Gk
5 iseralt.5 φG0
6 iseralt.6 φkZFk=1kGk
7 oveq2 x=02x=20
8 2t0e0 20=0
9 7 8 eqtrdi x=02x=0
10 9 oveq2d x=0N+2x=N+0
11 10 fveq2d x=0seqM+FN+2x=seqM+FN+0
12 11 oveq2d x=01NseqM+FN+2x=1NseqM+FN+0
13 12 breq1d x=01NseqM+FN+2x1NseqM+FN1NseqM+FN+01NseqM+FN
14 13 imbi2d x=0φNZ1NseqM+FN+2x1NseqM+FNφNZ1NseqM+FN+01NseqM+FN
15 oveq2 x=n2x=2n
16 15 oveq2d x=nN+2x=N+2n
17 16 fveq2d x=nseqM+FN+2x=seqM+FN+2n
18 17 oveq2d x=n1NseqM+FN+2x=1NseqM+FN+2n
19 18 breq1d x=n1NseqM+FN+2x1NseqM+FN1NseqM+FN+2n1NseqM+FN
20 19 imbi2d x=nφNZ1NseqM+FN+2x1NseqM+FNφNZ1NseqM+FN+2n1NseqM+FN
21 oveq2 x=n+12x=2n+1
22 21 oveq2d x=n+1N+2x=N+2n+1
23 22 fveq2d x=n+1seqM+FN+2x=seqM+FN+2n+1
24 23 oveq2d x=n+11NseqM+FN+2x=1NseqM+FN+2n+1
25 24 breq1d x=n+11NseqM+FN+2x1NseqM+FN1NseqM+FN+2n+11NseqM+FN
26 25 imbi2d x=n+1φNZ1NseqM+FN+2x1NseqM+FNφNZ1NseqM+FN+2n+11NseqM+FN
27 oveq2 x=K2x=2K
28 27 oveq2d x=KN+2x=N+2K
29 28 fveq2d x=KseqM+FN+2x=seqM+FN+2K
30 29 oveq2d x=K1NseqM+FN+2x=1NseqM+FN+2K
31 30 breq1d x=K1NseqM+FN+2x1NseqM+FN1NseqM+FN+2K1NseqM+FN
32 31 imbi2d x=KφNZ1NseqM+FN+2x1NseqM+FNφNZ1NseqM+FN+2K1NseqM+FN
33 uzssz M
34 1 33 eqsstri Z
35 34 a1i φZ
36 35 sselda φNZN
37 36 zcnd φNZN
38 37 addridd φNZN+0=N
39 38 fveq2d φNZseqM+FN+0=seqM+FN
40 39 oveq2d φNZ1NseqM+FN+0=1NseqM+FN
41 neg1rr 1
42 neg1ne0 10
43 reexpclz 110N1N
44 41 42 36 43 mp3an12i φNZ1N
45 35 sselda φkZk
46 reexpclz 110k1k
47 41 42 45 46 mp3an12i φkZ1k
48 3 ffvelcdmda φkZGk
49 47 48 remulcld φkZ1kGk
50 6 49 eqeltrd φkZFk
51 1 2 50 serfre φseqM+F:Z
52 51 ffvelcdmda φNZseqM+FN
53 44 52 remulcld φNZ1NseqM+FN
54 53 leidd φNZ1NseqM+FN1NseqM+FN
55 40 54 eqbrtrd φNZ1NseqM+FN+01NseqM+FN
56 3 ad2antrr φNZn0G:Z
57 ax-1cn 1
58 57 2timesi 21=1+1
59 58 oveq2i N+2n+21=N+2n+1+1
60 simpr φNZNZ
61 60 1 eleqtrdi φNZNM
62 61 adantr φNZn0NM
63 eluzelz NMN
64 62 63 syl φNZn0N
65 64 zcnd φNZn0N
66 2cn 2
67 nn0cn n0n
68 67 adantl φNZn0n
69 mulcl 2n2n
70 66 68 69 sylancr φNZn02n
71 66 57 mulcli 21
72 71 a1i φNZn021
73 65 70 72 addassd φNZn0N+2n+21=N+2n+21
74 59 73 eqtr3id φNZn0N+2n+1+1=N+2n+21
75 2nn0 20
76 simpr φNZn0n0
77 nn0mulcl 20n02n0
78 75 76 77 sylancr φNZn02n0
79 uzaddcl NM2n0N+2nM
80 62 78 79 syl2anc φNZn0N+2nM
81 33 80 sselid φNZn0N+2n
82 81 zcnd φNZn0N+2n
83 1cnd φNZn01
84 82 83 83 addassd φNZn0N+2n+1+1=N+2n+1+1
85 2cnd φNZn02
86 85 68 83 adddid φNZn02n+1=2n+21
87 86 oveq2d φNZn0N+2n+1=N+2n+21
88 74 84 87 3eqtr4d φNZn0N+2n+1+1=N+2n+1
89 peano2nn0 n0n+10
90 89 adantl φNZn0n+10
91 nn0mulcl 20n+102n+10
92 75 90 91 sylancr φNZn02n+10
93 uzaddcl NM2n+10N+2n+1M
94 62 92 93 syl2anc φNZn0N+2n+1M
95 94 1 eleqtrrdi φNZn0N+2n+1Z
96 88 95 eqeltrd φNZn0N+2n+1+1Z
97 56 96 ffvelcdmd φNZn0GN+2n+1+1
98 peano2uz N+2nMN+2n+1M
99 80 98 syl φNZn0N+2n+1M
100 99 1 eleqtrrdi φNZn0N+2n+1Z
101 56 100 ffvelcdmd φNZn0GN+2n+1
102 97 101 resubcld φNZn0GN+2n+1+1GN+2n+1
103 0red φNZn00
104 44 adantr φNZn01N
105 51 ad2antrr φNZn0seqM+F:Z
106 80 1 eleqtrrdi φNZn0N+2nZ
107 105 106 ffvelcdmd φNZn0seqM+FN+2n
108 104 107 remulcld φNZn01NseqM+FN+2n
109 fvoveq1 k=N+2n+1Gk+1=GN+2n+1+1
110 fveq2 k=N+2n+1Gk=GN+2n+1
111 109 110 breq12d k=N+2n+1Gk+1GkGN+2n+1+1GN+2n+1
112 4 ralrimiva φkZGk+1Gk
113 112 ad2antrr φNZn0kZGk+1Gk
114 111 113 100 rspcdva φNZn0GN+2n+1+1GN+2n+1
115 97 101 suble0d φNZn0GN+2n+1+1GN+2n+10GN+2n+1+1GN+2n+1
116 114 115 mpbird φNZn0GN+2n+1+1GN+2n+10
117 102 103 108 116 leadd2dd φNZn01NseqM+FN+2n+GN+2n+1+1-GN+2n+11NseqM+FN+2n+0
118 seqp1 N+2n+1MseqM+FN+2n+1+1=seqM+FN+2n+1+FN+2n+1+1
119 99 118 syl φNZn0seqM+FN+2n+1+1=seqM+FN+2n+1+FN+2n+1+1
120 seqp1 N+2nMseqM+FN+2n+1=seqM+FN+2n+FN+2n+1
121 80 120 syl φNZn0seqM+FN+2n+1=seqM+FN+2n+FN+2n+1
122 121 oveq1d φNZn0seqM+FN+2n+1+FN+2n+1+1=seqM+FN+2n+FN+2n+1+FN+2n+1+1
123 119 122 eqtrd φNZn0seqM+FN+2n+1+1=seqM+FN+2n+FN+2n+1+FN+2n+1+1
124 88 fveq2d φNZn0seqM+FN+2n+1+1=seqM+FN+2n+1
125 107 recnd φNZn0seqM+FN+2n
126 fveq2 k=N+2n+1Fk=FN+2n+1
127 oveq2 k=N+2n+11k=1N+2n+1
128 127 110 oveq12d k=N+2n+11kGk=1N+2n+1GN+2n+1
129 126 128 eqeq12d k=N+2n+1Fk=1kGkFN+2n+1=1N+2n+1GN+2n+1
130 6 ralrimiva φkZFk=1kGk
131 130 ad2antrr φNZn0kZFk=1kGk
132 129 131 100 rspcdva φNZn0FN+2n+1=1N+2n+1GN+2n+1
133 neg1cn 1
134 133 a1i φNZn01
135 42 a1i φNZn010
136 134 135 81 expp1zd φNZn01N+2n+1=1N+2n-1
137 41 a1i φNZn01
138 137 135 81 reexpclzd φNZn01N+2n
139 138 recnd φNZn01N+2n
140 mulcom 1N+2n11N+2n-1=-11N+2n
141 139 133 140 sylancl φNZn01N+2n-1=-11N+2n
142 139 mulm1d φNZn0-11N+2n=1N+2n
143 136 141 142 3eqtrd φNZn01N+2n+1=1N+2n
144 143 oveq1d φNZn01N+2n+1GN+2n+1=1N+2nGN+2n+1
145 101 recnd φNZn0GN+2n+1
146 mulneg12 1N+2nGN+2n+11N+2nGN+2n+1=1N+2nGN+2n+1
147 139 145 146 syl2anc φNZn01N+2nGN+2n+1=1N+2nGN+2n+1
148 132 144 147 3eqtrd φNZn0FN+2n+1=1N+2nGN+2n+1
149 101 renegcld φNZn0GN+2n+1
150 138 149 remulcld φNZn01N+2nGN+2n+1
151 148 150 eqeltrd φNZn0FN+2n+1
152 151 recnd φNZn0FN+2n+1
153 fveq2 k=N+2n+1+1Fk=FN+2n+1+1
154 oveq2 k=N+2n+1+11k=1N+2n+1+1
155 fveq2 k=N+2n+1+1Gk=GN+2n+1+1
156 154 155 oveq12d k=N+2n+1+11kGk=1N+2n+1+1GN+2n+1+1
157 153 156 eqeq12d k=N+2n+1+1Fk=1kGkFN+2n+1+1=1N+2n+1+1GN+2n+1+1
158 157 131 96 rspcdva φNZn0FN+2n+1+1=1N+2n+1+1GN+2n+1+1
159 81 peano2zd φNZn0N+2n+1
160 134 135 159 expp1zd φNZn01N+2n+1+1=1N+2n+1-1
161 143 oveq1d φNZn01N+2n+1-1=1N+2n-1
162 mul2neg 1N+2n11N+2n-1=1N+2n1
163 139 57 162 sylancl φNZn01N+2n-1=1N+2n1
164 139 mulridd φNZn01N+2n1=1N+2n
165 163 164 eqtrd φNZn01N+2n-1=1N+2n
166 160 161 165 3eqtrd φNZn01N+2n+1+1=1N+2n
167 166 oveq1d φNZn01N+2n+1+1GN+2n+1+1=1N+2nGN+2n+1+1
168 158 167 eqtrd φNZn0FN+2n+1+1=1N+2nGN+2n+1+1
169 138 97 remulcld φNZn01N+2nGN+2n+1+1
170 168 169 eqeltrd φNZn0FN+2n+1+1
171 170 recnd φNZn0FN+2n+1+1
172 125 152 171 addassd φNZn0seqM+FN+2n+FN+2n+1+FN+2n+1+1=seqM+FN+2n+FN+2n+1+FN+2n+1+1
173 123 124 172 3eqtr3d φNZn0seqM+FN+2n+1=seqM+FN+2n+FN+2n+1+FN+2n+1+1
174 173 oveq2d φNZn01NseqM+FN+2n+1=1NseqM+FN+2n+FN+2n+1+FN+2n+1+1
175 104 recnd φNZn01N
176 151 170 readdcld φNZn0FN+2n+1+FN+2n+1+1
177 176 recnd φNZn0FN+2n+1+FN+2n+1+1
178 175 125 177 adddid φNZn01NseqM+FN+2n+FN+2n+1+FN+2n+1+1=1NseqM+FN+2n+1NFN+2n+1+FN+2n+1+1
179 175 152 171 adddid φNZn01NFN+2n+1+FN+2n+1+1=1NFN+2n+1+1NFN+2n+1+1
180 148 oveq2d φNZn01NFN+2n+1=1N1N+2nGN+2n+1
181 149 recnd φNZn0GN+2n+1
182 175 139 181 mulassd φNZn01N1N+2nGN+2n+1=1N1N+2nGN+2n+1
183 180 182 eqtr4d φNZn01NFN+2n+1=1N1N+2nGN+2n+1
184 85 65 68 adddid φNZn02N+n=2 N+2n
185 65 2timesd φNZn02 N=N+N
186 185 oveq1d φNZn02 N+2n=N+N+2n
187 65 65 70 addassd φNZn0N+N+2n=N+N+2n
188 184 186 187 3eqtrrd φNZn0N+N+2n=2N+n
189 188 oveq2d φNZn01N+N+2n=12N+n
190 expaddz 110NN+2n1N+N+2n=1N1N+2n
191 134 135 64 81 190 syl22anc φNZn01N+N+2n=1N1N+2n
192 2z 2
193 192 a1i φNZn02
194 nn0z n0n
195 zaddcl NnN+n
196 36 194 195 syl2an φNZn0N+n
197 expmulz 1102N+n12N+n=-12N+n
198 134 135 193 196 197 syl22anc φNZn012N+n=-12N+n
199 neg1sqe1 12=1
200 199 oveq1i -12N+n=1N+n
201 1exp N+n1N+n=1
202 196 201 syl φNZn01N+n=1
203 200 202 eqtrid φNZn0-12N+n=1
204 198 203 eqtrd φNZn012N+n=1
205 189 191 204 3eqtr3d φNZn01N1N+2n=1
206 205 oveq1d φNZn01N1N+2nGN+2n+1=1GN+2n+1
207 181 mullidd φNZn01GN+2n+1=GN+2n+1
208 183 206 207 3eqtrd φNZn01NFN+2n+1=GN+2n+1
209 168 oveq2d φNZn01NFN+2n+1+1=1N1N+2nGN+2n+1+1
210 97 recnd φNZn0GN+2n+1+1
211 175 139 210 mulassd φNZn01N1N+2nGN+2n+1+1=1N1N+2nGN+2n+1+1
212 209 211 eqtr4d φNZn01NFN+2n+1+1=1N1N+2nGN+2n+1+1
213 205 oveq1d φNZn01N1N+2nGN+2n+1+1=1GN+2n+1+1
214 210 mullidd φNZn01GN+2n+1+1=GN+2n+1+1
215 212 213 214 3eqtrd φNZn01NFN+2n+1+1=GN+2n+1+1
216 208 215 oveq12d φNZn01NFN+2n+1+1NFN+2n+1+1=-GN+2n+1+GN+2n+1+1
217 145 negcld φNZn0GN+2n+1
218 217 210 addcomd φNZn0-GN+2n+1+GN+2n+1+1=GN+2n+1+1+GN+2n+1
219 210 145 negsubd φNZn0GN+2n+1+1+GN+2n+1=GN+2n+1+1GN+2n+1
220 218 219 eqtrd φNZn0-GN+2n+1+GN+2n+1+1=GN+2n+1+1GN+2n+1
221 179 216 220 3eqtrd φNZn01NFN+2n+1+FN+2n+1+1=GN+2n+1+1GN+2n+1
222 221 oveq2d φNZn01NseqM+FN+2n+1NFN+2n+1+FN+2n+1+1=1NseqM+FN+2n+GN+2n+1+1-GN+2n+1
223 174 178 222 3eqtrrd φNZn01NseqM+FN+2n+GN+2n+1+1-GN+2n+1=1NseqM+FN+2n+1
224 108 recnd φNZn01NseqM+FN+2n
225 224 addridd φNZn01NseqM+FN+2n+0=1NseqM+FN+2n
226 117 223 225 3brtr3d φNZn01NseqM+FN+2n+11NseqM+FN+2n
227 105 95 ffvelcdmd φNZn0seqM+FN+2n+1
228 104 227 remulcld φNZn01NseqM+FN+2n+1
229 53 adantr φNZn01NseqM+FN
230 letr 1NseqM+FN+2n+11NseqM+FN+2n1NseqM+FN1NseqM+FN+2n+11NseqM+FN+2n1NseqM+FN+2n1NseqM+FN1NseqM+FN+2n+11NseqM+FN
231 228 108 229 230 syl3anc φNZn01NseqM+FN+2n+11NseqM+FN+2n1NseqM+FN+2n1NseqM+FN1NseqM+FN+2n+11NseqM+FN
232 226 231 mpand φNZn01NseqM+FN+2n1NseqM+FN1NseqM+FN+2n+11NseqM+FN
233 232 expcom n0φNZ1NseqM+FN+2n1NseqM+FN1NseqM+FN+2n+11NseqM+FN
234 233 a2d n0φNZ1NseqM+FN+2n1NseqM+FNφNZ1NseqM+FN+2n+11NseqM+FN
235 14 20 26 32 55 234 nn0ind K0φNZ1NseqM+FN+2K1NseqM+FN
236 235 com12 φNZK01NseqM+FN+2K1NseqM+FN
237 236 3impia φNZK01NseqM+FN+2K1NseqM+FN