Description: Lemma for iseralt . The terms of an alternating series form a chain of inequalities in alternate terms, so that for example S ( 1 ) <_ S ( 3 ) <_ S ( 5 ) <_ ... and ... <_ S ( 4 ) <_ S ( 2 ) <_ S ( 0 ) (assuming M = 0 so that these terms are defined). (Contributed by Mario Carneiro, 6-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iseralt.1 | |
|
iseralt.2 | |
||
iseralt.3 | |
||
iseralt.4 | |
||
iseralt.5 | |
||
iseralt.6 | |
||
Assertion | iseraltlem2 | |