Metamath Proof Explorer


Theorem itgpowd

Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019) (Revised by Thierry Arnoux, 14-Jun-2019)

Ref Expression
Hypotheses itgpowd.1 φ A
itgpowd.2 φ B
itgpowd.3 φ A B
itgpowd.4 φ N 0
Assertion itgpowd φ A B x N dx = B N + 1 A N + 1 N + 1

Proof

Step Hyp Ref Expression
1 itgpowd.1 φ A
2 itgpowd.2 φ B
3 itgpowd.3 φ A B
4 itgpowd.4 φ N 0
5 nn0p1nn N 0 N + 1
6 4 5 syl φ N + 1
7 6 nncnd φ N + 1
8 iccssre A B A B
9 1 2 8 syl2anc φ A B
10 ax-resscn
11 9 10 sstrdi φ A B
12 11 sselda φ x A B x
13 4 adantr φ x A B N 0
14 12 13 expcld φ x A B x N
15 11 resmptd φ x x N A B = x A B x N
16 expcncf N 0 x x N : cn
17 4 16 syl φ x x N : cn
18 rescncf A B x x N : cn x x N A B : A B cn
19 11 17 18 sylc φ x x N A B : A B cn
20 15 19 eqeltrrd φ x A B x N : A B cn
21 cnicciblnc A B x A B x N : A B cn x A B x N 𝐿 1
22 1 2 20 21 syl3anc φ x A B x N 𝐿 1
23 14 22 itgcl φ A B x N dx
24 6 nnne0d φ N + 1 0
25 7 14 22 itgmulc2 φ N + 1 A B x N dx = A B N + 1 x N dx
26 eqidd φ x A B t A B N + 1 t N = t A B N + 1 t N
27 oveq1 t = x t N = x N
28 27 oveq2d t = x N + 1 t N = N + 1 x N
29 28 adantl φ x A B t = x N + 1 t N = N + 1 x N
30 simpr φ x A B x A B
31 7 adantr φ x A B N + 1
32 ioossicc A B A B
33 32 a1i φ A B A B
34 33 sselda φ x A B x A B
35 34 14 syldan φ x A B x N
36 31 35 mulcld φ x A B N + 1 x N
37 26 29 30 36 fvmptd φ x A B t A B N + 1 t N x = N + 1 x N
38 37 itgeq2dv φ A B t A B N + 1 t N x dx = A B N + 1 x N dx
39 reelprrecn
40 39 a1i φ
41 10 a1i φ
42 41 sselda φ t t
43 1nn0 1 0
44 43 a1i φ 1 0
45 4 44 nn0addcld φ N + 1 0
46 45 adantr φ t N + 1 0
47 42 46 expcld φ t t N + 1
48 4 nn0cnd φ N
49 48 adantr φ t N
50 1cnd φ t 1
51 49 50 addcld φ t N + 1
52 4 adantr φ t N 0
53 42 52 expcld φ t t N
54 51 53 mulcld φ t N + 1 t N
55 simpr φ t t
56 45 adantr φ t N + 1 0
57 55 56 expcld φ t t N + 1
58 57 fmpttd φ t t N + 1 :
59 ssidd φ
60 7 adantr φ t N + 1
61 4 adantr φ t N 0
62 55 61 expcld φ t t N
63 60 62 mulcld φ t N + 1 t N
64 63 fmpttd φ t N + 1 t N :
65 dvexp N + 1 dt t N + 1 d t = t N + 1 t N + 1 - 1
66 6 65 syl φ dt t N + 1 d t = t N + 1 t N + 1 - 1
67 1cnd φ 1
68 48 67 pncand φ N + 1 - 1 = N
69 68 oveq2d φ t N + 1 - 1 = t N
70 69 oveq2d φ N + 1 t N + 1 - 1 = N + 1 t N
71 70 mpteq2dv φ t N + 1 t N + 1 - 1 = t N + 1 t N
72 66 71 eqtrd φ dt t N + 1 d t = t N + 1 t N
73 72 feq1d φ dt t N + 1 d t : t N + 1 t N :
74 64 73 mpbird φ dt t N + 1 d t :
75 74 fdmd φ dom dt t N + 1 d t =
76 10 75 sseqtrrid φ dom dt t N + 1 d t
77 dvres3 t t N + 1 : dom dt t N + 1 d t D t t N + 1 = dt t N + 1 d t
78 40 58 59 76 77 syl22anc φ D t t N + 1 = dt t N + 1 d t
79 72 reseq1d φ dt t N + 1 d t = t N + 1 t N
80 78 79 eqtrd φ D t t N + 1 = t N + 1 t N
81 resmpt t t N + 1 = t t N + 1
82 10 81 mp1i φ t t N + 1 = t t N + 1
83 82 oveq2d φ D t t N + 1 = dt t N + 1 d t
84 resmpt t N + 1 t N = t N + 1 t N
85 10 84 mp1i φ t N + 1 t N = t N + 1 t N
86 80 83 85 3eqtr3d φ dt t N + 1 d t = t N + 1 t N
87 eqid TopOpen fld = TopOpen fld
88 87 tgioo2 topGen ran . = TopOpen fld 𝑡
89 iccntr A B int topGen ran . A B = A B
90 1 2 89 syl2anc φ int topGen ran . A B = A B
91 40 47 54 86 9 88 87 90 dvmptres2 φ dt A B t N + 1 d t = t A B N + 1 t N
92 ioossre A B
93 92 10 sstri A B
94 93 a1i φ A B
95 cncfmptc N + 1 A B t A B N + 1 : A B cn
96 7 94 59 95 syl3anc φ t A B N + 1 : A B cn
97 resmpt A B t t N A B = t A B t N
98 93 97 mp1i φ t t N A B = t A B t N
99 expcncf N 0 t t N : cn
100 4 99 syl φ t t N : cn
101 rescncf A B t t N : cn t t N A B : A B cn
102 94 100 101 sylc φ t t N A B : A B cn
103 98 102 eqeltrrd φ t A B t N : A B cn
104 96 103 mulcncf φ t A B N + 1 t N : A B cn
105 91 104 eqeltrd φ dt A B t N + 1 d t : A B cn
106 ioombl A B dom vol
107 106 a1i φ A B dom vol
108 48 adantr φ t A B N
109 1cnd φ t A B 1
110 108 109 addcld φ t A B N + 1
111 11 sselda φ t A B t
112 4 adantr φ t A B N 0
113 111 112 expcld φ t A B t N
114 110 113 mulcld φ t A B N + 1 t N
115 cncfmptc N + 1 A B t A B N + 1 : A B cn
116 7 11 59 115 syl3anc φ t A B N + 1 : A B cn
117 11 resmptd φ t t N A B = t A B t N
118 rescncf A B t t N : cn t t N A B : A B cn
119 11 100 118 sylc φ t t N A B : A B cn
120 117 119 eqeltrrd φ t A B t N : A B cn
121 116 120 mulcncf φ t A B N + 1 t N : A B cn
122 cnicciblnc A B t A B N + 1 t N : A B cn t A B N + 1 t N 𝐿 1
123 1 2 121 122 syl3anc φ t A B N + 1 t N 𝐿 1
124 33 107 114 123 iblss φ t A B N + 1 t N 𝐿 1
125 91 124 eqeltrd φ dt A B t N + 1 d t 𝐿 1
126 11 resmptd φ t t N + 1 A B = t A B t N + 1
127 expcncf N + 1 0 t t N + 1 : cn
128 45 127 syl φ t t N + 1 : cn
129 rescncf A B t t N + 1 : cn t t N + 1 A B : A B cn
130 11 128 129 sylc φ t t N + 1 A B : A B cn
131 126 130 eqeltrrd φ t A B t N + 1 : A B cn
132 1 2 3 105 125 131 ftc2 φ A B dt A B t N + 1 d t x dx = t A B t N + 1 B t A B t N + 1 A
133 91 fveq1d φ dt A B t N + 1 d t x = t A B N + 1 t N x
134 133 ralrimivw φ x A B dt A B t N + 1 d t x = t A B N + 1 t N x
135 itgeq2 x A B dt A B t N + 1 d t x = t A B N + 1 t N x A B dt A B t N + 1 d t x dx = A B t A B N + 1 t N x dx
136 134 135 syl φ A B dt A B t N + 1 d t x dx = A B t A B N + 1 t N x dx
137 eqidd φ t A B t N + 1 = t A B t N + 1
138 simpr φ t = B t = B
139 138 oveq1d φ t = B t N + 1 = B N + 1
140 1 rexrd φ A *
141 2 rexrd φ B *
142 ubicc2 A * B * A B B A B
143 140 141 3 142 syl3anc φ B A B
144 2 recnd φ B
145 144 45 expcld φ B N + 1
146 137 139 143 145 fvmptd φ t A B t N + 1 B = B N + 1
147 simpr φ t = A t = A
148 147 oveq1d φ t = A t N + 1 = A N + 1
149 lbicc2 A * B * A B A A B
150 140 141 3 149 syl3anc φ A A B
151 1 recnd φ A
152 151 45 expcld φ A N + 1
153 137 148 150 152 fvmptd φ t A B t N + 1 A = A N + 1
154 146 153 oveq12d φ t A B t N + 1 B t A B t N + 1 A = B N + 1 A N + 1
155 132 136 154 3eqtr3d φ A B t A B N + 1 t N x dx = B N + 1 A N + 1
156 7 adantr φ x A B N + 1
157 156 14 mulcld φ x A B N + 1 x N
158 1 2 157 itgioo φ A B N + 1 x N dx = A B N + 1 x N dx
159 38 155 158 3eqtr3rd φ A B N + 1 x N dx = B N + 1 A N + 1
160 25 159 eqtrd φ N + 1 A B x N dx = B N + 1 A N + 1
161 7 23 24 160 mvllmuld φ A B x N dx = B N + 1 A N + 1 N + 1