Metamath Proof Explorer


Theorem lgamgulmlem5

Description: Lemma for lgamgulm . (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.g G=mzUzlogm+1mlogzm+1
lgamgulm.t T=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
Assertion lgamgulmlem5 φnyUGnyTn

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.g G=mzUzlogm+1mlogzm+1
4 lgamgulm.t T=mif2RmR2R+1m2Rlogm+1m+logR+1m+π
5 breq2 R2R+1n2=if2RnR2R+1n2Rlogn+1n+logR+1n+πylogn+1nlogyn+1R2R+1n2ylogn+1nlogyn+1if2RnR2R+1n2Rlogn+1n+logR+1n+π
6 breq2 Rlogn+1n+logR+1n+π=if2RnR2R+1n2Rlogn+1n+logR+1n+πylogn+1nlogyn+1Rlogn+1n+logR+1n+πylogn+1nlogyn+1if2RnR2R+1n2Rlogn+1n+logR+1n+π
7 1 adantr φnyUR
8 7 adantr φnyU2RnR
9 fveq2 x=tx=t
10 9 breq1d x=txRtR
11 fvoveq1 x=tx+k=t+k
12 11 breq2d x=t1Rx+k1Rt+k
13 12 ralbidv x=tk01Rx+kk01Rt+k
14 10 13 anbi12d x=txRk01Rx+ktRk01Rt+k
15 14 cbvrabv x|xRk01Rx+k=t|tRk01Rt+k
16 2 15 eqtri U=t|tRk01Rt+k
17 simplrl φnyU2Rnn
18 simprr φnyUyU
19 18 adantr φnyU2RnyU
20 simpr φnyU2Rn2Rn
21 8 16 17 19 20 lgamgulmlem3 φnyU2Rnylogn+1nlogyn+1R2R+1n2
22 1 2 lgamgulmlem1 φU
23 22 adantr φnyUU
24 23 18 sseldd φnyUy
25 24 eldifad φnyUy
26 simprl φnyUn
27 26 peano2nnd φnyUn+1
28 27 nnrpd φnyUn+1+
29 26 nnrpd φnyUn+
30 28 29 rpdivcld φnyUn+1n+
31 30 relogcld φnyUlogn+1n
32 31 recnd φnyUlogn+1n
33 25 32 mulcld φnyUylogn+1n
34 26 nncnd φnyUn
35 26 nnne0d φnyUn0
36 25 34 35 divcld φnyUyn
37 1cnd φnyU1
38 36 37 addcld φnyUyn+1
39 24 26 dmgmdivn0 φnyUyn+10
40 38 39 logcld φnyUlogyn+1
41 33 40 subcld φnyUylogn+1nlogyn+1
42 41 abscld φnyUylogn+1nlogyn+1
43 33 abscld φnyUylogn+1n
44 40 abscld φnyUlogyn+1
45 43 44 readdcld φnyUylogn+1n+logyn+1
46 7 nnred φnyUR
47 46 31 remulcld φnyURlogn+1n
48 7 peano2nnd φnyUR+1
49 48 nnrpd φnyUR+1+
50 49 29 rpmulcld φnyUR+1n+
51 50 relogcld φnyUlogR+1n
52 pire π
53 52 a1i φnyUπ
54 51 53 readdcld φnyUlogR+1n+π
55 47 54 readdcld φnyURlogn+1n+logR+1n+π
56 33 40 abs2dif2d φnyUylogn+1nlogyn+1ylogn+1n+logyn+1
57 25 32 absmuld φnyUylogn+1n=ylogn+1n
58 30 rpred φnyUn+1n
59 34 mullidd φnyU1n=n
60 26 nnred φnyUn
61 60 lep1d φnyUnn+1
62 59 61 eqbrtrd φnyU1nn+1
63 1red φnyU1
64 60 63 readdcld φnyUn+1
65 63 64 29 lemuldivd φnyU1nn+11n+1n
66 62 65 mpbid φnyU1n+1n
67 58 66 logge0d φnyU0logn+1n
68 31 67 absidd φnyUlogn+1n=logn+1n
69 68 oveq2d φnyUylogn+1n=ylogn+1n
70 57 69 eqtrd φnyUylogn+1n=ylogn+1n
71 25 abscld φnyUy
72 fveq2 x=yx=y
73 72 breq1d x=yxRyR
74 fvoveq1 x=yx+k=y+k
75 74 breq2d x=y1Rx+k1Ry+k
76 75 ralbidv x=yk01Rx+kk01Ry+k
77 73 76 anbi12d x=yxRk01Rx+kyRk01Ry+k
78 77 2 elrab2 yUyyRk01Ry+k
79 78 simprbi yUyRk01Ry+k
80 79 ad2antll φnyUyRk01Ry+k
81 80 simpld φnyUyR
82 71 46 31 67 81 lemul1ad φnyUylogn+1nRlogn+1n
83 70 82 eqbrtrd φnyUylogn+1nRlogn+1n
84 38 39 absrpcld φnyUyn+1+
85 84 relogcld φnyUlogyn+1
86 85 recnd φnyUlogyn+1
87 86 abscld φnyUlogyn+1
88 87 53 readdcld φnyUlogyn+1+π
89 abslogle yn+1yn+10logyn+1logyn+1+π
90 38 39 89 syl2anc φnyUlogyn+1logyn+1+π
91 1rp 1+
92 relogdiv 1+R+1n+log1R+1n=log1logR+1n
93 91 50 92 sylancr φnyUlog1R+1n=log1logR+1n
94 log1 log1=0
95 94 oveq1i log1logR+1n=0logR+1n
96 df-neg logR+1n=0logR+1n
97 95 96 eqtr4i log1logR+1n=logR+1n
98 93 97 eqtr2di φnyUlogR+1n=log1R+1n
99 48 nnrecred φnyU1R+1
100 25 34 addcld φnyUy+n
101 100 abscld φnyUy+n
102 7 nnrecred φnyU1R
103 7 nnrpd φnyUR+
104 0le1 01
105 104 a1i φnyU01
106 46 lep1d φnyURR+1
107 103 49 63 105 106 lediv2ad φnyU1R+11R
108 oveq2 k=ny+k=y+n
109 108 fveq2d k=ny+k=y+n
110 109 breq2d k=n1Ry+k1Ry+n
111 80 simprd φnyUk01Ry+k
112 26 nnnn0d φnyUn0
113 110 111 112 rspcdva φnyU1Ry+n
114 99 102 101 107 113 letrd φnyU1R+1y+n
115 99 101 29 114 lediv1dd φnyU1R+1ny+nn
116 48 nncnd φnyUR+1
117 48 nnne0d φnyUR+10
118 116 34 117 35 recdiv2d φnyU1R+1n=1R+1n
119 25 34 34 35 divdird φnyUy+nn=yn+nn
120 34 35 dividd φnyUnn=1
121 120 oveq2d φnyUyn+nn=yn+1
122 119 121 eqtr2d φnyUyn+1=y+nn
123 122 fveq2d φnyUyn+1=y+nn
124 100 34 35 absdivd φnyUy+nn=y+nn
125 29 rpge0d φnyU0n
126 60 125 absidd φnyUn=n
127 126 oveq2d φnyUy+nn=y+nn
128 123 124 127 3eqtrrd φnyUy+nn=yn+1
129 115 118 128 3brtr3d φnyU1R+1nyn+1
130 50 rpreccld φnyU1R+1n+
131 130 84 logled φnyU1R+1nyn+1log1R+1nlogyn+1
132 129 131 mpbid φnyUlog1R+1nlogyn+1
133 98 132 eqbrtrd φnyUlogR+1nlogyn+1
134 38 abscld φnyUyn+1
135 46 63 readdcld φnyUR+1
136 50 rpred φnyUR+1n
137 36 abscld φnyUyn
138 137 63 readdcld φnyUyn+1
139 36 37 abstrid φnyUyn+1yn+1
140 abs1 1=1
141 140 oveq2i yn+1=yn+1
142 139 141 breqtrdi φnyUyn+1yn+1
143 91 a1i φnyU1+
144 25 absge0d φnyU0y
145 26 nnge1d φnyU1n
146 71 46 143 60 144 81 145 lediv12ad φnyUynR1
147 25 34 35 absdivd φnyUyn=yn
148 126 oveq2d φnyUyn=yn
149 147 148 eqtr2d φnyUyn=yn
150 7 nncnd φnyUR
151 150 div1d φnyUR1=R
152 146 149 151 3brtr3d φnyUynR
153 137 46 63 152 leadd1dd φnyUyn+1R+1
154 134 138 135 142 153 letrd φnyUyn+1R+1
155 49 rpge0d φnyU0R+1
156 135 60 155 145 lemulge11d φnyUR+1R+1n
157 134 135 136 154 156 letrd φnyUyn+1R+1n
158 84 50 logled φnyUyn+1R+1nlogyn+1logR+1n
159 157 158 mpbid φnyUlogyn+1logR+1n
160 85 51 absled φnyUlogyn+1logR+1nlogR+1nlogyn+1logyn+1logR+1n
161 133 159 160 mpbir2and φnyUlogyn+1logR+1n
162 87 51 53 161 leadd1dd φnyUlogyn+1+πlogR+1n+π
163 44 88 54 90 162 letrd φnyUlogyn+1logR+1n+π
164 43 44 47 54 83 163 le2addd φnyUylogn+1n+logyn+1Rlogn+1n+logR+1n+π
165 42 45 55 56 164 letrd φnyUylogn+1nlogyn+1Rlogn+1n+logR+1n+π
166 165 adantr φnyU¬2Rnylogn+1nlogyn+1Rlogn+1n+logR+1n+π
167 5 6 21 166 ifbothda φnyUylogn+1nlogyn+1if2RnR2R+1n2Rlogn+1n+logR+1n+π
168 oveq1 m=nm+1=n+1
169 id m=nm=n
170 168 169 oveq12d m=nm+1m=n+1n
171 170 fveq2d m=nlogm+1m=logn+1n
172 171 oveq2d m=nzlogm+1m=zlogn+1n
173 oveq2 m=nzm=zn
174 173 fvoveq1d m=nlogzm+1=logzn+1
175 172 174 oveq12d m=nzlogm+1mlogzm+1=zlogn+1nlogzn+1
176 175 mpteq2dv m=nzUzlogm+1mlogzm+1=zUzlogn+1nlogzn+1
177 cnex V
178 2 177 rabex2 UV
179 178 mptex zUzlogn+1nlogzn+1V
180 176 3 179 fvmpt nGn=zUzlogn+1nlogzn+1
181 180 ad2antrl φnyUGn=zUzlogn+1nlogzn+1
182 181 fveq1d φnyUGny=zUzlogn+1nlogzn+1y
183 oveq1 z=yzlogn+1n=ylogn+1n
184 oveq1 z=yzn=yn
185 184 fvoveq1d z=ylogzn+1=logyn+1
186 183 185 oveq12d z=yzlogn+1nlogzn+1=ylogn+1nlogyn+1
187 eqid zUzlogn+1nlogzn+1=zUzlogn+1nlogzn+1
188 ovex ylogn+1nlogyn+1V
189 186 187 188 fvmpt yUzUzlogn+1nlogzn+1y=ylogn+1nlogyn+1
190 189 ad2antll φnyUzUzlogn+1nlogzn+1y=ylogn+1nlogyn+1
191 182 190 eqtrd φnyUGny=ylogn+1nlogyn+1
192 191 fveq2d φnyUGny=ylogn+1nlogyn+1
193 breq2 m=n2Rm2Rn
194 oveq1 m=nm2=n2
195 194 oveq2d m=n2R+1m2=2R+1n2
196 195 oveq2d m=nR2R+1m2=R2R+1n2
197 171 oveq2d m=nRlogm+1m=Rlogn+1n
198 oveq2 m=nR+1m=R+1n
199 198 fveq2d m=nlogR+1m=logR+1n
200 199 oveq1d m=nlogR+1m+π=logR+1n+π
201 197 200 oveq12d m=nRlogm+1m+logR+1m+π=Rlogn+1n+logR+1n+π
202 193 196 201 ifbieq12d m=nif2RmR2R+1m2Rlogm+1m+logR+1m+π=if2RnR2R+1n2Rlogn+1n+logR+1n+π
203 ovex R2R+1n2V
204 ovex Rlogn+1n+logR+1n+πV
205 203 204 ifex if2RnR2R+1n2Rlogn+1n+logR+1n+πV
206 202 4 205 fvmpt nTn=if2RnR2R+1n2Rlogn+1n+logR+1n+π
207 206 ad2antrl φnyUTn=if2RnR2R+1n2Rlogn+1n+logR+1n+π
208 167 192 207 3brtr4d φnyUGnyTn