Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Gamma function
lgamgulmlem5
Next ⟩
lgamgulmlem6
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgamgulmlem5
Description:
Lemma for
lgamgulm
.
(Contributed by
Mario Carneiro
, 3-Jul-2017)
Ref
Expression
Hypotheses
lgamgulm.r
⊢
φ
→
R
∈
ℕ
lgamgulm.u
⊢
U
=
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
lgamgulm.g
⊢
G
=
m
∈
ℕ
⟼
z
∈
U
⟼
z
log
m
+
1
m
−
log
z
m
+
1
lgamgulm.t
π
⊢
T
=
m
∈
ℕ
⟼
if
2
R
≤
m
R
2
R
+
1
m
2
R
log
m
+
1
m
+
log
R
+
1
m
+
π
Assertion
lgamgulmlem5
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
G
n
y
≤
T
n
Proof
Step
Hyp
Ref
Expression
1
lgamgulm.r
⊢
φ
→
R
∈
ℕ
2
lgamgulm.u
⊢
U
=
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
3
lgamgulm.g
⊢
G
=
m
∈
ℕ
⟼
z
∈
U
⟼
z
log
m
+
1
m
−
log
z
m
+
1
4
lgamgulm.t
π
⊢
T
=
m
∈
ℕ
⟼
if
2
R
≤
m
R
2
R
+
1
m
2
R
log
m
+
1
m
+
log
R
+
1
m
+
π
5
breq2
π
π
⊢
R
2
R
+
1
n
2
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
R
2
R
+
1
n
2
↔
y
log
n
+
1
n
−
log
y
n
+
1
≤
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
6
breq2
π
π
π
π
⊢
R
log
n
+
1
n
+
log
R
+
1
n
+
π
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
R
log
n
+
1
n
+
log
R
+
1
n
+
π
↔
y
log
n
+
1
n
−
log
y
n
+
1
≤
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
7
1
adantr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
∈
ℕ
8
7
adantr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
∧
2
R
≤
n
→
R
∈
ℕ
9
fveq2
⊢
x
=
t
→
x
=
t
10
9
breq1d
⊢
x
=
t
→
x
≤
R
↔
t
≤
R
11
fvoveq1
⊢
x
=
t
→
x
+
k
=
t
+
k
12
11
breq2d
⊢
x
=
t
→
1
R
≤
x
+
k
↔
1
R
≤
t
+
k
13
12
ralbidv
⊢
x
=
t
→
∀
k
∈
ℕ
0
1
R
≤
x
+
k
↔
∀
k
∈
ℕ
0
1
R
≤
t
+
k
14
10
13
anbi12d
⊢
x
=
t
→
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
↔
t
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
t
+
k
15
14
cbvrabv
⊢
x
∈
ℂ
|
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
=
t
∈
ℂ
|
t
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
t
+
k
16
2
15
eqtri
⊢
U
=
t
∈
ℂ
|
t
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
t
+
k
17
simplrl
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
∧
2
R
≤
n
→
n
∈
ℕ
18
simprr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
∈
U
19
18
adantr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
∧
2
R
≤
n
→
y
∈
U
20
simpr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
∧
2
R
≤
n
→
2
R
≤
n
21
8
16
17
19
20
lgamgulmlem3
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
∧
2
R
≤
n
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
R
2
R
+
1
n
2
22
1
2
lgamgulmlem1
⊢
φ
→
U
⊆
ℂ
∖
ℤ
∖
ℕ
23
22
adantr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
U
⊆
ℂ
∖
ℤ
∖
ℕ
24
23
18
sseldd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
∈
ℂ
∖
ℤ
∖
ℕ
25
24
eldifad
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
∈
ℂ
26
simprl
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
∈
ℕ
27
26
peano2nnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
+
1
∈
ℕ
28
27
nnrpd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
+
1
∈
ℝ
+
29
26
nnrpd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
∈
ℝ
+
30
28
29
rpdivcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
+
1
n
∈
ℝ
+
31
30
relogcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
n
+
1
n
∈
ℝ
32
31
recnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
n
+
1
n
∈
ℂ
33
25
32
mulcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
∈
ℂ
34
26
nncnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
∈
ℂ
35
26
nnne0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
≠
0
36
25
34
35
divcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
∈
ℂ
37
1cnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
∈
ℂ
38
36
37
addcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
∈
ℂ
39
24
26
dmgmdivn0
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≠
0
40
38
39
logcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
∈
ℂ
41
33
40
subcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
−
log
y
n
+
1
∈
ℂ
42
41
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
−
log
y
n
+
1
∈
ℝ
43
33
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
∈
ℝ
44
40
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
∈
ℝ
45
43
44
readdcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
+
log
y
n
+
1
∈
ℝ
46
7
nnred
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
∈
ℝ
47
46
31
remulcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
log
n
+
1
n
∈
ℝ
48
7
peano2nnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
∈
ℕ
49
48
nnrpd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
∈
ℝ
+
50
49
29
rpmulcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
n
∈
ℝ
+
51
50
relogcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
R
+
1
n
∈
ℝ
52
pire
π
⊢
π
∈
ℝ
53
52
a1i
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
π
∈
ℝ
54
51
53
readdcld
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
R
+
1
n
+
π
∈
ℝ
55
47
54
readdcld
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
ℝ
56
33
40
abs2dif2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
y
log
n
+
1
n
+
log
y
n
+
1
57
25
32
absmuld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
=
y
log
n
+
1
n
58
30
rpred
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
+
1
n
∈
ℝ
59
34
mullidd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
n
=
n
60
26
nnred
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
∈
ℝ
61
60
lep1d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
≤
n
+
1
62
59
61
eqbrtrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
n
≤
n
+
1
63
1red
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
∈
ℝ
64
60
63
readdcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
+
1
∈
ℝ
65
63
64
29
lemuldivd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
n
≤
n
+
1
↔
1
≤
n
+
1
n
66
62
65
mpbid
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
≤
n
+
1
n
67
58
66
logge0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
0
≤
log
n
+
1
n
68
31
67
absidd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
n
+
1
n
=
log
n
+
1
n
69
68
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
=
y
log
n
+
1
n
70
57
69
eqtrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
=
y
log
n
+
1
n
71
25
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
∈
ℝ
72
fveq2
⊢
x
=
y
→
x
=
y
73
72
breq1d
⊢
x
=
y
→
x
≤
R
↔
y
≤
R
74
fvoveq1
⊢
x
=
y
→
x
+
k
=
y
+
k
75
74
breq2d
⊢
x
=
y
→
1
R
≤
x
+
k
↔
1
R
≤
y
+
k
76
75
ralbidv
⊢
x
=
y
→
∀
k
∈
ℕ
0
1
R
≤
x
+
k
↔
∀
k
∈
ℕ
0
1
R
≤
y
+
k
77
73
76
anbi12d
⊢
x
=
y
→
x
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
x
+
k
↔
y
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
y
+
k
78
77
2
elrab2
⊢
y
∈
U
↔
y
∈
ℂ
∧
y
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
y
+
k
79
78
simprbi
⊢
y
∈
U
→
y
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
y
+
k
80
79
ad2antll
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
≤
R
∧
∀
k
∈
ℕ
0
1
R
≤
y
+
k
81
80
simpld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
≤
R
82
71
46
31
67
81
lemul1ad
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
≤
R
log
n
+
1
n
83
70
82
eqbrtrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
≤
R
log
n
+
1
n
84
38
39
absrpcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
∈
ℝ
+
85
84
relogcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
∈
ℝ
86
85
recnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
∈
ℂ
87
86
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
∈
ℝ
88
87
53
readdcld
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
+
π
∈
ℝ
89
abslogle
π
⊢
y
n
+
1
∈
ℂ
∧
y
n
+
1
≠
0
→
log
y
n
+
1
≤
log
y
n
+
1
+
π
90
38
39
89
syl2anc
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
≤
log
y
n
+
1
+
π
91
1rp
⊢
1
∈
ℝ
+
92
relogdiv
⊢
1
∈
ℝ
+
∧
R
+
1
n
∈
ℝ
+
→
log
1
R
+
1
n
=
log
1
−
log
R
+
1
n
93
91
50
92
sylancr
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
1
R
+
1
n
=
log
1
−
log
R
+
1
n
94
log1
⊢
log
1
=
0
95
94
oveq1i
⊢
log
1
−
log
R
+
1
n
=
0
−
log
R
+
1
n
96
df-neg
⊢
−
log
R
+
1
n
=
0
−
log
R
+
1
n
97
95
96
eqtr4i
⊢
log
1
−
log
R
+
1
n
=
−
log
R
+
1
n
98
93
97
eqtr2di
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
−
log
R
+
1
n
=
log
1
R
+
1
n
99
48
nnrecred
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
∈
ℝ
100
25
34
addcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
+
n
∈
ℂ
101
100
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
+
n
∈
ℝ
102
7
nnrecred
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
∈
ℝ
103
7
nnrpd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
∈
ℝ
+
104
0le1
⊢
0
≤
1
105
104
a1i
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
0
≤
1
106
46
lep1d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
≤
R
+
1
107
103
49
63
105
106
lediv2ad
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
≤
1
R
108
oveq2
⊢
k
=
n
→
y
+
k
=
y
+
n
109
108
fveq2d
⊢
k
=
n
→
y
+
k
=
y
+
n
110
109
breq2d
⊢
k
=
n
→
1
R
≤
y
+
k
↔
1
R
≤
y
+
n
111
80
simprd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
∀
k
∈
ℕ
0
1
R
≤
y
+
k
112
26
nnnn0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
∈
ℕ
0
113
110
111
112
rspcdva
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
≤
y
+
n
114
99
102
101
107
113
letrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
≤
y
+
n
115
99
101
29
114
lediv1dd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
n
≤
y
+
n
n
116
48
nncnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
∈
ℂ
117
48
nnne0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
≠
0
118
116
34
117
35
recdiv2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
n
=
1
R
+
1
n
119
25
34
34
35
divdird
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
+
n
n
=
y
n
+
n
n
120
34
35
dividd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
n
=
1
121
120
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
n
n
=
y
n
+
1
122
119
121
eqtr2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
=
y
+
n
n
123
122
fveq2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
=
y
+
n
n
124
100
34
35
absdivd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
+
n
n
=
y
+
n
n
125
29
rpge0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
0
≤
n
126
60
125
absidd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
n
=
n
127
126
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
+
n
n
=
y
+
n
n
128
123
124
127
3eqtrrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
+
n
n
=
y
n
+
1
129
115
118
128
3brtr3d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
n
≤
y
n
+
1
130
50
rpreccld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
n
∈
ℝ
+
131
130
84
logled
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
R
+
1
n
≤
y
n
+
1
↔
log
1
R
+
1
n
≤
log
y
n
+
1
132
129
131
mpbid
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
1
R
+
1
n
≤
log
y
n
+
1
133
98
132
eqbrtrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
−
log
R
+
1
n
≤
log
y
n
+
1
134
38
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
∈
ℝ
135
46
63
readdcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
∈
ℝ
136
50
rpred
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
n
∈
ℝ
137
36
abscld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
∈
ℝ
138
137
63
readdcld
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
∈
ℝ
139
36
37
abstrid
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≤
y
n
+
1
140
abs1
⊢
1
=
1
141
140
oveq2i
⊢
y
n
+
1
=
y
n
+
1
142
139
141
breqtrdi
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≤
y
n
+
1
143
91
a1i
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
∈
ℝ
+
144
25
absge0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
0
≤
y
145
26
nnge1d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
1
≤
n
146
71
46
143
60
144
81
145
lediv12ad
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
≤
R
1
147
25
34
35
absdivd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
=
y
n
148
126
oveq2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
=
y
n
149
147
148
eqtr2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
=
y
n
150
7
nncnd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
∈
ℂ
151
150
div1d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
1
=
R
152
146
149
151
3brtr3d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
≤
R
153
137
46
63
152
leadd1dd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≤
R
+
1
154
134
138
135
142
153
letrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≤
R
+
1
155
49
rpge0d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
0
≤
R
+
1
156
135
60
155
145
lemulge11d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
R
+
1
≤
R
+
1
n
157
134
135
136
154
156
letrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≤
R
+
1
n
158
84
50
logled
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
n
+
1
≤
R
+
1
n
↔
log
y
n
+
1
≤
log
R
+
1
n
159
157
158
mpbid
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
≤
log
R
+
1
n
160
85
51
absled
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
≤
log
R
+
1
n
↔
−
log
R
+
1
n
≤
log
y
n
+
1
∧
log
y
n
+
1
≤
log
R
+
1
n
161
133
159
160
mpbir2and
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
≤
log
R
+
1
n
162
87
51
53
161
leadd1dd
π
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
+
π
≤
log
R
+
1
n
+
π
163
44
88
54
90
162
letrd
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
log
y
n
+
1
≤
log
R
+
1
n
+
π
164
43
44
47
54
83
163
le2addd
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
+
log
y
n
+
1
≤
R
log
n
+
1
n
+
log
R
+
1
n
+
π
165
42
45
55
56
164
letrd
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
R
log
n
+
1
n
+
log
R
+
1
n
+
π
166
165
adantr
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
∧
¬
2
R
≤
n
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
R
log
n
+
1
n
+
log
R
+
1
n
+
π
167
5
6
21
166
ifbothda
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
y
log
n
+
1
n
−
log
y
n
+
1
≤
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
168
oveq1
⊢
m
=
n
→
m
+
1
=
n
+
1
169
id
⊢
m
=
n
→
m
=
n
170
168
169
oveq12d
⊢
m
=
n
→
m
+
1
m
=
n
+
1
n
171
170
fveq2d
⊢
m
=
n
→
log
m
+
1
m
=
log
n
+
1
n
172
171
oveq2d
⊢
m
=
n
→
z
log
m
+
1
m
=
z
log
n
+
1
n
173
oveq2
⊢
m
=
n
→
z
m
=
z
n
174
173
fvoveq1d
⊢
m
=
n
→
log
z
m
+
1
=
log
z
n
+
1
175
172
174
oveq12d
⊢
m
=
n
→
z
log
m
+
1
m
−
log
z
m
+
1
=
z
log
n
+
1
n
−
log
z
n
+
1
176
175
mpteq2dv
⊢
m
=
n
→
z
∈
U
⟼
z
log
m
+
1
m
−
log
z
m
+
1
=
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
177
cnex
⊢
ℂ
∈
V
178
2
177
rabex2
⊢
U
∈
V
179
178
mptex
⊢
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
∈
V
180
176
3
179
fvmpt
⊢
n
∈
ℕ
→
G
n
=
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
181
180
ad2antrl
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
G
n
=
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
182
181
fveq1d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
G
n
y
=
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
y
183
oveq1
⊢
z
=
y
→
z
log
n
+
1
n
=
y
log
n
+
1
n
184
oveq1
⊢
z
=
y
→
z
n
=
y
n
185
184
fvoveq1d
⊢
z
=
y
→
log
z
n
+
1
=
log
y
n
+
1
186
183
185
oveq12d
⊢
z
=
y
→
z
log
n
+
1
n
−
log
z
n
+
1
=
y
log
n
+
1
n
−
log
y
n
+
1
187
eqid
⊢
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
=
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
188
ovex
⊢
y
log
n
+
1
n
−
log
y
n
+
1
∈
V
189
186
187
188
fvmpt
⊢
y
∈
U
→
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
y
=
y
log
n
+
1
n
−
log
y
n
+
1
190
189
ad2antll
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
z
∈
U
⟼
z
log
n
+
1
n
−
log
z
n
+
1
y
=
y
log
n
+
1
n
−
log
y
n
+
1
191
182
190
eqtrd
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
G
n
y
=
y
log
n
+
1
n
−
log
y
n
+
1
192
191
fveq2d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
G
n
y
=
y
log
n
+
1
n
−
log
y
n
+
1
193
breq2
⊢
m
=
n
→
2
R
≤
m
↔
2
R
≤
n
194
oveq1
⊢
m
=
n
→
m
2
=
n
2
195
194
oveq2d
⊢
m
=
n
→
2
R
+
1
m
2
=
2
R
+
1
n
2
196
195
oveq2d
⊢
m
=
n
→
R
2
R
+
1
m
2
=
R
2
R
+
1
n
2
197
171
oveq2d
⊢
m
=
n
→
R
log
m
+
1
m
=
R
log
n
+
1
n
198
oveq2
⊢
m
=
n
→
R
+
1
m
=
R
+
1
n
199
198
fveq2d
⊢
m
=
n
→
log
R
+
1
m
=
log
R
+
1
n
200
199
oveq1d
π
π
⊢
m
=
n
→
log
R
+
1
m
+
π
=
log
R
+
1
n
+
π
201
197
200
oveq12d
π
π
⊢
m
=
n
→
R
log
m
+
1
m
+
log
R
+
1
m
+
π
=
R
log
n
+
1
n
+
log
R
+
1
n
+
π
202
193
196
201
ifbieq12d
π
π
⊢
m
=
n
→
if
2
R
≤
m
R
2
R
+
1
m
2
R
log
m
+
1
m
+
log
R
+
1
m
+
π
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
203
ovex
⊢
R
2
R
+
1
n
2
∈
V
204
ovex
π
⊢
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
V
205
203
204
ifex
π
⊢
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
∈
V
206
202
4
205
fvmpt
π
⊢
n
∈
ℕ
→
T
n
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
207
206
ad2antrl
π
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
T
n
=
if
2
R
≤
n
R
2
R
+
1
n
2
R
log
n
+
1
n
+
log
R
+
1
n
+
π
208
167
192
207
3brtr4d
⊢
φ
∧
n
∈
ℕ
∧
y
∈
U
→
G
n
y
≤
T
n