Step |
Hyp |
Ref |
Expression |
1 |
|
lgamucov.u |
|
2 |
|
lgamucov.a |
|
3 |
|
lgamucov.j |
|
4 |
|
cnxmet |
|
5 |
|
difss |
|
6 |
3
|
sszcld |
|
7 |
3
|
cnfldtopon |
|
8 |
7
|
toponunii |
|
9 |
8
|
cldopn |
|
10 |
5 6 9
|
mp2b |
|
11 |
10
|
a1i |
|
12 |
3
|
cnfldtopn |
|
13 |
12
|
mopni2 |
|
14 |
4 11 2 13
|
mp3an2i |
|
15 |
2
|
eldifad |
|
16 |
15
|
adantr |
|
17 |
16
|
abscld |
|
18 |
|
simprl |
|
19 |
18
|
rpred |
|
20 |
17 19
|
readdcld |
|
21 |
|
2re |
|
22 |
21
|
a1i |
|
23 |
22 18
|
rerpdivcld |
|
24 |
20 23
|
readdcld |
|
25 |
|
arch |
|
26 |
24 25
|
syl |
|
27 |
3
|
cnfldtop |
|
28 |
27
|
a1i |
|
29 |
1
|
ssrab3 |
|
30 |
29
|
a1i |
|
31 |
16
|
ad2antrr |
|
32 |
18
|
ad2antrr |
|
33 |
32
|
rphalfcld |
|
34 |
33
|
rpxrd |
|
35 |
12
|
blopn |
|
36 |
4 31 34 35
|
mp3an2i |
|
37 |
|
simplr |
|
38 |
37
|
abscld |
|
39 |
|
simp-4r |
|
40 |
39
|
nnred |
|
41 |
24
|
ad4antr |
|
42 |
20
|
ad4antr |
|
43 |
17
|
ad4antr |
|
44 |
38 43
|
resubcld |
|
45 |
19
|
ad4antr |
|
46 |
45
|
rehalfcld |
|
47 |
31
|
ad2antrr |
|
48 |
37 47
|
subcld |
|
49 |
48
|
abscld |
|
50 |
37 47
|
abs2difd |
|
51 |
|
eqid |
|
52 |
51
|
cnmetdval |
|
53 |
47 37 52
|
syl2anc |
|
54 |
47 37
|
abssubd |
|
55 |
53 54
|
eqtrd |
|
56 |
|
simpr |
|
57 |
55 56
|
eqbrtrrd |
|
58 |
44 49 46 50 57
|
lelttrd |
|
59 |
32
|
ad2antrr |
|
60 |
|
rphalflt |
|
61 |
59 60
|
syl |
|
62 |
44 46 45 58 61
|
lttrd |
|
63 |
38 43 45
|
ltsubadd2d |
|
64 |
62 63
|
mpbid |
|
65 |
|
2rp |
|
66 |
65
|
a1i |
|
67 |
66 59
|
rpdivcld |
|
68 |
42 67
|
ltaddrpd |
|
69 |
38 42 41 64 68
|
lttrd |
|
70 |
|
simpllr |
|
71 |
38 41 40 69 70
|
lttrd |
|
72 |
38 40 71
|
ltled |
|
73 |
39
|
adantr |
|
74 |
73
|
nnrecred |
|
75 |
|
simpllr |
|
76 |
|
simpr |
|
77 |
76
|
nn0cnd |
|
78 |
75 77
|
addcld |
|
79 |
78
|
abscld |
|
80 |
46
|
adantr |
|
81 |
23
|
ad5antr |
|
82 |
41
|
adantr |
|
83 |
40
|
adantr |
|
84 |
47
|
adantr |
|
85 |
2
|
ad6antr |
|
86 |
85
|
dmgmn0 |
|
87 |
84 86
|
absrpcld |
|
88 |
59
|
adantr |
|
89 |
87 88
|
rpaddcld |
|
90 |
81 89
|
ltaddrp2d |
|
91 |
|
simp-4r |
|
92 |
81 82 83 90 91
|
lttrd |
|
93 |
67
|
adantr |
|
94 |
73
|
nnrpd |
|
95 |
93 94
|
ltrecd |
|
96 |
92 95
|
mpbid |
|
97 |
|
2cnd |
|
98 |
88
|
rpcnd |
|
99 |
|
2ne0 |
|
100 |
99
|
a1i |
|
101 |
88
|
rpne0d |
|
102 |
97 98 100 101
|
recdivd |
|
103 |
96 102
|
breqtrd |
|
104 |
|
eldmgm |
|
105 |
104
|
simprbi |
|
106 |
77
|
negnegd |
|
107 |
106 76
|
eqeltrd |
|
108 |
105 107
|
nsyl3 |
|
109 |
4
|
a1i |
|
110 |
34
|
ad3antrrr |
|
111 |
77
|
negcld |
|
112 |
|
elbl2 |
|
113 |
109 110 75 111 112
|
syl22anc |
|
114 |
51
|
cnmetdval |
|
115 |
75 111 114
|
syl2anc |
|
116 |
75 77
|
subnegd |
|
117 |
116
|
fveq2d |
|
118 |
115 117
|
eqtrd |
|
119 |
118
|
breq1d |
|
120 |
79 80
|
ltnled |
|
121 |
113 119 120
|
3bitrd |
|
122 |
45
|
adantr |
|
123 |
|
simplr |
|
124 |
|
elbl3 |
|
125 |
109 110 75 84 124
|
syl22anc |
|
126 |
123 125
|
mpbird |
|
127 |
|
blhalf |
|
128 |
109 75 122 126 127
|
syl22anc |
|
129 |
|
simprr |
|
130 |
129
|
ad5antr |
|
131 |
128 130
|
sstrd |
|
132 |
131
|
sseld |
|
133 |
121 132
|
sylbird |
|
134 |
108 133
|
mt3d |
|
135 |
74 80 79 103 134
|
ltletrd |
|
136 |
74 79 135
|
ltled |
|
137 |
136
|
ralrimiva |
|
138 |
72 137
|
jca |
|
139 |
138
|
ex |
|
140 |
139
|
ss2rabdv |
|
141 |
|
blval |
|
142 |
4 31 34 141
|
mp3an2i |
|
143 |
1
|
a1i |
|
144 |
140 142 143
|
3sstr4d |
|
145 |
8
|
ssntr |
|
146 |
28 30 36 144 145
|
syl22anc |
|
147 |
|
blcntr |
|
148 |
4 31 33 147
|
mp3an2i |
|
149 |
146 148
|
sseldd |
|
150 |
149
|
ex |
|
151 |
150
|
reximdva |
|
152 |
26 151
|
mpd |
|
153 |
14 152
|
rexlimddv |
|