Metamath Proof Explorer


Theorem lgamucov

Description: The U regions used in the proof of lgamgulm have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamucov.u U = x | x r k 0 1 r x + k
lgamucov.a φ A
lgamucov.j J = TopOpen fld
Assertion lgamucov φ r A int J U

Proof

Step Hyp Ref Expression
1 lgamucov.u U = x | x r k 0 1 r x + k
2 lgamucov.a φ A
3 lgamucov.j J = TopOpen fld
4 cnxmet abs ∞Met
5 difss
6 3 sszcld Clsd J
7 3 cnfldtopon J TopOn
8 7 toponunii = J
9 8 cldopn Clsd J J
10 5 6 9 mp2b J
11 10 a1i φ J
12 3 cnfldtopn J = MetOpen abs
13 12 mopni2 abs ∞Met J A a + A ball abs a
14 4 11 2 13 mp3an2i φ a + A ball abs a
15 2 eldifad φ A
16 15 adantr φ a + A ball abs a A
17 16 abscld φ a + A ball abs a A
18 simprl φ a + A ball abs a a +
19 18 rpred φ a + A ball abs a a
20 17 19 readdcld φ a + A ball abs a A + a
21 2re 2
22 21 a1i φ a + A ball abs a 2
23 22 18 rerpdivcld φ a + A ball abs a 2 a
24 20 23 readdcld φ a + A ball abs a A + a + 2 a
25 arch A + a + 2 a r A + a + 2 a < r
26 24 25 syl φ a + A ball abs a r A + a + 2 a < r
27 3 cnfldtop J Top
28 27 a1i φ a + A ball abs a r A + a + 2 a < r J Top
29 1 ssrab3 U
30 29 a1i φ a + A ball abs a r A + a + 2 a < r U
31 16 ad2antrr φ a + A ball abs a r A + a + 2 a < r A
32 18 ad2antrr φ a + A ball abs a r A + a + 2 a < r a +
33 32 rphalfcld φ a + A ball abs a r A + a + 2 a < r a 2 +
34 33 rpxrd φ a + A ball abs a r A + a + 2 a < r a 2 *
35 12 blopn abs ∞Met A a 2 * A ball abs a 2 J
36 4 31 34 35 mp3an2i φ a + A ball abs a r A + a + 2 a < r A ball abs a 2 J
37 simplr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x
38 37 abscld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x
39 simp-4r φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 r
40 39 nnred φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 r
41 24 ad4antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A + a + 2 a
42 20 ad4antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A + a
43 17 ad4antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A
44 38 43 resubcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A
45 19 ad4antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 a
46 45 rehalfcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 a 2
47 31 ad2antrr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A
48 37 47 subcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A
49 48 abscld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A
50 37 47 abs2difd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A x A
51 eqid abs = abs
52 51 cnmetdval A x A abs x = A x
53 47 37 52 syl2anc φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A abs x = A x
54 47 37 abssubd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A x = x A
55 53 54 eqtrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A abs x = x A
56 simpr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A abs x < a 2
57 55 56 eqbrtrrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A < a 2
58 44 49 46 50 57 lelttrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A < a 2
59 32 ad2antrr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 a +
60 rphalflt a + a 2 < a
61 59 60 syl φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 a 2 < a
62 44 46 45 58 61 lttrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A < a
63 38 43 45 ltsubadd2d φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x A < a x < A + a
64 62 63 mpbid φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x < A + a
65 2rp 2 +
66 65 a1i φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 2 +
67 66 59 rpdivcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 2 a +
68 42 67 ltaddrpd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A + a < A + a + 2 a
69 38 42 41 64 68 lttrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x < A + a + 2 a
70 simpllr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 A + a + 2 a < r
71 38 41 40 69 70 lttrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x < r
72 38 40 71 ltled φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x r
73 39 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 r
74 73 nnrecred φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 r
75 simpllr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x
76 simpr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k 0
77 76 nn0cnd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k
78 75 77 addcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x + k
79 78 abscld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x + k
80 46 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a 2
81 23 ad5antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2 a
82 41 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A + a + 2 a
83 40 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 r
84 47 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A
85 2 ad6antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A
86 85 dmgmn0 φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A 0
87 84 86 absrpcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A +
88 59 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a +
89 87 88 rpaddcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A + a +
90 81 89 ltaddrp2d φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2 a < A + a + 2 a
91 simp-4r φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A + a + 2 a < r
92 81 82 83 90 91 lttrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2 a < r
93 67 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2 a +
94 73 nnrpd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 r +
95 93 94 ltrecd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2 a < r 1 r < 1 2 a
96 92 95 mpbid φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 r < 1 2 a
97 2cnd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2
98 88 rpcnd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a
99 2ne0 2 0
100 99 a1i φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 2 0
101 88 rpne0d φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a 0
102 97 98 100 101 recdivd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 2 a = a 2
103 96 102 breqtrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 r < a 2
104 eldmgm k k ¬ k 0
105 104 simprbi k ¬ k 0
106 77 negnegd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k = k
107 106 76 eqeltrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k 0
108 105 107 nsyl3 φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 ¬ k
109 4 a1i φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 abs ∞Met
110 34 ad3antrrr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a 2 *
111 77 negcld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k
112 elbl2 abs ∞Met a 2 * x k k x ball abs a 2 x abs k < a 2
113 109 110 75 111 112 syl22anc φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k x ball abs a 2 x abs k < a 2
114 51 cnmetdval x k x abs k = x k
115 75 111 114 syl2anc φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x abs k = x k
116 75 77 subnegd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x k = x + k
117 116 fveq2d φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x k = x + k
118 115 117 eqtrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x abs k = x + k
119 118 breq1d φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x abs k < a 2 x + k < a 2
120 79 80 ltnled φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x + k < a 2 ¬ a 2 x + k
121 113 119 120 3bitrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k x ball abs a 2 ¬ a 2 x + k
122 45 adantr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a
123 simplr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A abs x < a 2
124 elbl3 abs ∞Met a 2 * x A A x ball abs a 2 A abs x < a 2
125 109 110 75 84 124 syl22anc φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A x ball abs a 2 A abs x < a 2
126 123 125 mpbird φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A x ball abs a 2
127 blhalf abs ∞Met x a A x ball abs a 2 x ball abs a 2 A ball abs a
128 109 75 122 126 127 syl22anc φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x ball abs a 2 A ball abs a
129 simprr φ a + A ball abs a A ball abs a
130 129 ad5antr φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 A ball abs a
131 128 130 sstrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 x ball abs a 2
132 131 sseld φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 k x ball abs a 2 k
133 121 132 sylbird φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 ¬ a 2 x + k k
134 108 133 mt3d φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 a 2 x + k
135 74 80 79 103 134 ltletrd φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 r < x + k
136 74 79 135 ltled φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 r x + k
137 136 ralrimiva φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 k 0 1 r x + k
138 72 137 jca φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x r k 0 1 r x + k
139 138 ex φ a + A ball abs a r A + a + 2 a < r x A abs x < a 2 x r k 0 1 r x + k
140 139 ss2rabdv φ a + A ball abs a r A + a + 2 a < r x | A abs x < a 2 x | x r k 0 1 r x + k
141 blval abs ∞Met A a 2 * A ball abs a 2 = x | A abs x < a 2
142 4 31 34 141 mp3an2i φ a + A ball abs a r A + a + 2 a < r A ball abs a 2 = x | A abs x < a 2
143 1 a1i φ a + A ball abs a r A + a + 2 a < r U = x | x r k 0 1 r x + k
144 140 142 143 3sstr4d φ a + A ball abs a r A + a + 2 a < r A ball abs a 2 U
145 8 ssntr J Top U A ball abs a 2 J A ball abs a 2 U A ball abs a 2 int J U
146 28 30 36 144 145 syl22anc φ a + A ball abs a r A + a + 2 a < r A ball abs a 2 int J U
147 blcntr abs ∞Met A a 2 + A A ball abs a 2
148 4 31 33 147 mp3an2i φ a + A ball abs a r A + a + 2 a < r A A ball abs a 2
149 146 148 sseldd φ a + A ball abs a r A + a + 2 a < r A int J U
150 149 ex φ a + A ball abs a r A + a + 2 a < r A int J U
151 150 reximdva φ a + A ball abs a r A + a + 2 a < r r A int J U
152 26 151 mpd φ a + A ball abs a r A int J U
153 14 152 rexlimddv φ r A int J U