Metamath Proof Explorer


Theorem lgamucov

Description: The U regions used in the proof of lgamgulm have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamucov.u U=x|xrk01rx+k
lgamucov.a φA
lgamucov.j J=TopOpenfld
Assertion lgamucov φrAintJU

Proof

Step Hyp Ref Expression
1 lgamucov.u U=x|xrk01rx+k
2 lgamucov.a φA
3 lgamucov.j J=TopOpenfld
4 cnxmet abs∞Met
5 difss
6 3 sszcld ClsdJ
7 3 cnfldtopon JTopOn
8 7 toponunii =J
9 8 cldopn ClsdJJ
10 5 6 9 mp2b J
11 10 a1i φJ
12 3 cnfldtopn J=MetOpenabs
13 12 mopni2 abs∞MetJAa+Aballabsa
14 4 11 2 13 mp3an2i φa+Aballabsa
15 2 eldifad φA
16 15 adantr φa+AballabsaA
17 16 abscld φa+AballabsaA
18 simprl φa+Aballabsaa+
19 18 rpred φa+Aballabsaa
20 17 19 readdcld φa+AballabsaA+a
21 2re 2
22 21 a1i φa+Aballabsa2
23 22 18 rerpdivcld φa+Aballabsa2a
24 20 23 readdcld φa+AballabsaA+a+2a
25 arch A+a+2arA+a+2a<r
26 24 25 syl φa+AballabsarA+a+2a<r
27 3 cnfldtop JTop
28 27 a1i φa+AballabsarA+a+2a<rJTop
29 1 ssrab3 U
30 29 a1i φa+AballabsarA+a+2a<rU
31 16 ad2antrr φa+AballabsarA+a+2a<rA
32 18 ad2antrr φa+AballabsarA+a+2a<ra+
33 32 rphalfcld φa+AballabsarA+a+2a<ra2+
34 33 rpxrd φa+AballabsarA+a+2a<ra2*
35 12 blopn abs∞MetAa2*Aballabsa2J
36 4 31 34 35 mp3an2i φa+AballabsarA+a+2a<rAballabsa2J
37 simplr φa+AballabsarA+a+2a<rxAabsx<a2x
38 37 abscld φa+AballabsarA+a+2a<rxAabsx<a2x
39 simp-4r φa+AballabsarA+a+2a<rxAabsx<a2r
40 39 nnred φa+AballabsarA+a+2a<rxAabsx<a2r
41 24 ad4antr φa+AballabsarA+a+2a<rxAabsx<a2A+a+2a
42 20 ad4antr φa+AballabsarA+a+2a<rxAabsx<a2A+a
43 17 ad4antr φa+AballabsarA+a+2a<rxAabsx<a2A
44 38 43 resubcld φa+AballabsarA+a+2a<rxAabsx<a2xA
45 19 ad4antr φa+AballabsarA+a+2a<rxAabsx<a2a
46 45 rehalfcld φa+AballabsarA+a+2a<rxAabsx<a2a2
47 31 ad2antrr φa+AballabsarA+a+2a<rxAabsx<a2A
48 37 47 subcld φa+AballabsarA+a+2a<rxAabsx<a2xA
49 48 abscld φa+AballabsarA+a+2a<rxAabsx<a2xA
50 37 47 abs2difd φa+AballabsarA+a+2a<rxAabsx<a2xAxA
51 eqid abs=abs
52 51 cnmetdval AxAabsx=Ax
53 47 37 52 syl2anc φa+AballabsarA+a+2a<rxAabsx<a2Aabsx=Ax
54 47 37 abssubd φa+AballabsarA+a+2a<rxAabsx<a2Ax=xA
55 53 54 eqtrd φa+AballabsarA+a+2a<rxAabsx<a2Aabsx=xA
56 simpr φa+AballabsarA+a+2a<rxAabsx<a2Aabsx<a2
57 55 56 eqbrtrrd φa+AballabsarA+a+2a<rxAabsx<a2xA<a2
58 44 49 46 50 57 lelttrd φa+AballabsarA+a+2a<rxAabsx<a2xA<a2
59 32 ad2antrr φa+AballabsarA+a+2a<rxAabsx<a2a+
60 rphalflt a+a2<a
61 59 60 syl φa+AballabsarA+a+2a<rxAabsx<a2a2<a
62 44 46 45 58 61 lttrd φa+AballabsarA+a+2a<rxAabsx<a2xA<a
63 38 43 45 ltsubadd2d φa+AballabsarA+a+2a<rxAabsx<a2xA<ax<A+a
64 62 63 mpbid φa+AballabsarA+a+2a<rxAabsx<a2x<A+a
65 2rp 2+
66 65 a1i φa+AballabsarA+a+2a<rxAabsx<a22+
67 66 59 rpdivcld φa+AballabsarA+a+2a<rxAabsx<a22a+
68 42 67 ltaddrpd φa+AballabsarA+a+2a<rxAabsx<a2A+a<A+a+2a
69 38 42 41 64 68 lttrd φa+AballabsarA+a+2a<rxAabsx<a2x<A+a+2a
70 simpllr φa+AballabsarA+a+2a<rxAabsx<a2A+a+2a<r
71 38 41 40 69 70 lttrd φa+AballabsarA+a+2a<rxAabsx<a2x<r
72 38 40 71 ltled φa+AballabsarA+a+2a<rxAabsx<a2xr
73 39 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0r
74 73 nnrecred φa+AballabsarA+a+2a<rxAabsx<a2k01r
75 simpllr φa+AballabsarA+a+2a<rxAabsx<a2k0x
76 simpr φa+AballabsarA+a+2a<rxAabsx<a2k0k0
77 76 nn0cnd φa+AballabsarA+a+2a<rxAabsx<a2k0k
78 75 77 addcld φa+AballabsarA+a+2a<rxAabsx<a2k0x+k
79 78 abscld φa+AballabsarA+a+2a<rxAabsx<a2k0x+k
80 46 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0a2
81 23 ad5antr φa+AballabsarA+a+2a<rxAabsx<a2k02a
82 41 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0A+a+2a
83 40 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0r
84 47 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0A
85 2 ad6antr φa+AballabsarA+a+2a<rxAabsx<a2k0A
86 85 dmgmn0 φa+AballabsarA+a+2a<rxAabsx<a2k0A0
87 84 86 absrpcld φa+AballabsarA+a+2a<rxAabsx<a2k0A+
88 59 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0a+
89 87 88 rpaddcld φa+AballabsarA+a+2a<rxAabsx<a2k0A+a+
90 81 89 ltaddrp2d φa+AballabsarA+a+2a<rxAabsx<a2k02a<A+a+2a
91 simp-4r φa+AballabsarA+a+2a<rxAabsx<a2k0A+a+2a<r
92 81 82 83 90 91 lttrd φa+AballabsarA+a+2a<rxAabsx<a2k02a<r
93 67 adantr φa+AballabsarA+a+2a<rxAabsx<a2k02a+
94 73 nnrpd φa+AballabsarA+a+2a<rxAabsx<a2k0r+
95 93 94 ltrecd φa+AballabsarA+a+2a<rxAabsx<a2k02a<r1r<12a
96 92 95 mpbid φa+AballabsarA+a+2a<rxAabsx<a2k01r<12a
97 2cnd φa+AballabsarA+a+2a<rxAabsx<a2k02
98 88 rpcnd φa+AballabsarA+a+2a<rxAabsx<a2k0a
99 2ne0 20
100 99 a1i φa+AballabsarA+a+2a<rxAabsx<a2k020
101 88 rpne0d φa+AballabsarA+a+2a<rxAabsx<a2k0a0
102 97 98 100 101 recdivd φa+AballabsarA+a+2a<rxAabsx<a2k012a=a2
103 96 102 breqtrd φa+AballabsarA+a+2a<rxAabsx<a2k01r<a2
104 eldmgm kk¬k0
105 104 simprbi k¬k0
106 77 negnegd φa+AballabsarA+a+2a<rxAabsx<a2k0k=k
107 106 76 eqeltrd φa+AballabsarA+a+2a<rxAabsx<a2k0k0
108 105 107 nsyl3 φa+AballabsarA+a+2a<rxAabsx<a2k0¬k
109 4 a1i φa+AballabsarA+a+2a<rxAabsx<a2k0abs∞Met
110 34 ad3antrrr φa+AballabsarA+a+2a<rxAabsx<a2k0a2*
111 77 negcld φa+AballabsarA+a+2a<rxAabsx<a2k0k
112 elbl2 abs∞Meta2*xkkxballabsa2xabsk<a2
113 109 110 75 111 112 syl22anc φa+AballabsarA+a+2a<rxAabsx<a2k0kxballabsa2xabsk<a2
114 51 cnmetdval xkxabsk=xk
115 75 111 114 syl2anc φa+AballabsarA+a+2a<rxAabsx<a2k0xabsk=xk
116 75 77 subnegd φa+AballabsarA+a+2a<rxAabsx<a2k0xk=x+k
117 116 fveq2d φa+AballabsarA+a+2a<rxAabsx<a2k0xk=x+k
118 115 117 eqtrd φa+AballabsarA+a+2a<rxAabsx<a2k0xabsk=x+k
119 118 breq1d φa+AballabsarA+a+2a<rxAabsx<a2k0xabsk<a2x+k<a2
120 79 80 ltnled φa+AballabsarA+a+2a<rxAabsx<a2k0x+k<a2¬a2x+k
121 113 119 120 3bitrd φa+AballabsarA+a+2a<rxAabsx<a2k0kxballabsa2¬a2x+k
122 45 adantr φa+AballabsarA+a+2a<rxAabsx<a2k0a
123 simplr φa+AballabsarA+a+2a<rxAabsx<a2k0Aabsx<a2
124 elbl3 abs∞Meta2*xAAxballabsa2Aabsx<a2
125 109 110 75 84 124 syl22anc φa+AballabsarA+a+2a<rxAabsx<a2k0Axballabsa2Aabsx<a2
126 123 125 mpbird φa+AballabsarA+a+2a<rxAabsx<a2k0Axballabsa2
127 blhalf abs∞MetxaAxballabsa2xballabsa2Aballabsa
128 109 75 122 126 127 syl22anc φa+AballabsarA+a+2a<rxAabsx<a2k0xballabsa2Aballabsa
129 simprr φa+AballabsaAballabsa
130 129 ad5antr φa+AballabsarA+a+2a<rxAabsx<a2k0Aballabsa
131 128 130 sstrd φa+AballabsarA+a+2a<rxAabsx<a2k0xballabsa2
132 131 sseld φa+AballabsarA+a+2a<rxAabsx<a2k0kxballabsa2k
133 121 132 sylbird φa+AballabsarA+a+2a<rxAabsx<a2k0¬a2x+kk
134 108 133 mt3d φa+AballabsarA+a+2a<rxAabsx<a2k0a2x+k
135 74 80 79 103 134 ltletrd φa+AballabsarA+a+2a<rxAabsx<a2k01r<x+k
136 74 79 135 ltled φa+AballabsarA+a+2a<rxAabsx<a2k01rx+k
137 136 ralrimiva φa+AballabsarA+a+2a<rxAabsx<a2k01rx+k
138 72 137 jca φa+AballabsarA+a+2a<rxAabsx<a2xrk01rx+k
139 138 ex φa+AballabsarA+a+2a<rxAabsx<a2xrk01rx+k
140 139 ss2rabdv φa+AballabsarA+a+2a<rx|Aabsx<a2x|xrk01rx+k
141 blval abs∞MetAa2*Aballabsa2=x|Aabsx<a2
142 4 31 34 141 mp3an2i φa+AballabsarA+a+2a<rAballabsa2=x|Aabsx<a2
143 1 a1i φa+AballabsarA+a+2a<rU=x|xrk01rx+k
144 140 142 143 3sstr4d φa+AballabsarA+a+2a<rAballabsa2U
145 8 ssntr JTopUAballabsa2JAballabsa2UAballabsa2intJU
146 28 30 36 144 145 syl22anc φa+AballabsarA+a+2a<rAballabsa2intJU
147 blcntr abs∞MetAa2+AAballabsa2
148 4 31 33 147 mp3an2i φa+AballabsarA+a+2a<rAAballabsa2
149 146 148 sseldd φa+AballabsarA+a+2a<rAintJU
150 149 ex φa+AballabsarA+a+2a<rAintJU
151 150 reximdva φa+AballabsarA+a+2a<rrAintJU
152 26 151 mpd φa+AballabsarAintJU
153 14 152 rexlimddv φrAintJU