Metamath Proof Explorer


Theorem lgsqrlem4

Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses lgsqr.y Y=/P
lgsqr.s S=Poly1Y
lgsqr.b B=BaseS
lgsqr.d D=deg1Y
lgsqr.o O=eval1Y
lgsqr.e ×˙=mulGrpS
lgsqr.x X=var1Y
lgsqr.m -˙=-S
lgsqr.u 1˙=1S
lgsqr.t T=P12×˙X-˙1˙
lgsqr.l L=ℤRHomY
lgsqr.1 φP2
lgsqr.g G=y1P12Ly2
lgsqr.3 φA
lgsqr.4 φA/LP=1
Assertion lgsqrlem4 φxPx2A

Proof

Step Hyp Ref Expression
1 lgsqr.y Y=/P
2 lgsqr.s S=Poly1Y
3 lgsqr.b B=BaseS
4 lgsqr.d D=deg1Y
5 lgsqr.o O=eval1Y
6 lgsqr.e ×˙=mulGrpS
7 lgsqr.x X=var1Y
8 lgsqr.m -˙=-S
9 lgsqr.u 1˙=1S
10 lgsqr.t T=P12×˙X-˙1˙
11 lgsqr.l L=ℤRHomY
12 lgsqr.1 φP2
13 lgsqr.g G=y1P12Ly2
14 lgsqr.3 φA
15 lgsqr.4 φA/LP=1
16 1 2 3 4 5 6 7 8 9 10 11 12 13 lgsqrlem2 φG:1P121-1OT-10Y
17 fvex OTV
18 17 cnvex OT-1V
19 18 imaex OT-10YV
20 19 f1dom G:1P121-1OT-10Y1P12OT-10Y
21 16 20 syl φ1P12OT-10Y
22 eqid 0Y=0Y
23 eqid 0S=0S
24 12 eldifad φP
25 1 znfld PYField
26 24 25 syl φYField
27 fldidom YFieldYIDomn
28 26 27 syl φYIDomn
29 isidom YIDomnYCRingYDomn
30 29 simplbi YIDomnYCRing
31 28 30 syl φYCRing
32 crngring YCRingYRing
33 31 32 syl φYRing
34 2 ply1ring YRingSRing
35 33 34 syl φSRing
36 ringgrp SRingSGrp
37 35 36 syl φSGrp
38 eqid mulGrpS=mulGrpS
39 38 3 mgpbas B=BasemulGrpS
40 38 ringmgp SRingmulGrpSMnd
41 35 40 syl φmulGrpSMnd
42 oddprm P2P12
43 12 42 syl φP12
44 43 nnnn0d φP120
45 7 2 3 vr1cl YRingXB
46 33 45 syl φXB
47 39 6 41 44 46 mulgnn0cld φP12×˙XB
48 3 9 ringidcl SRing1˙B
49 35 48 syl φ1˙B
50 3 8 grpsubcl SGrpP12×˙XB1˙BP12×˙X-˙1˙B
51 37 47 49 50 syl3anc φP12×˙X-˙1˙B
52 10 51 eqeltrid φTB
53 10 fveq2i DT=DP12×˙X-˙1˙
54 43 nngt0d φ0<P12
55 eqid algScS=algScS
56 eqid 1Y=1Y
57 2 55 56 9 ply1scl1 YRingalgScS1Y=1˙
58 33 57 syl φalgScS1Y=1˙
59 58 fveq2d φDalgScS1Y=D1˙
60 eqid BaseY=BaseY
61 60 56 ringidcl YRing1YBaseY
62 33 61 syl φ1YBaseY
63 domnnzr YDomnYNzRing
64 29 63 simplbiim YIDomnYNzRing
65 28 64 syl φYNzRing
66 56 22 nzrnz YNzRing1Y0Y
67 65 66 syl φ1Y0Y
68 4 2 60 55 22 deg1scl YRing1YBaseY1Y0YDalgScS1Y=0
69 33 62 67 68 syl3anc φDalgScS1Y=0
70 59 69 eqtr3d φD1˙=0
71 4 2 7 38 6 deg1pw YNzRingP120DP12×˙X=P12
72 65 44 71 syl2anc φDP12×˙X=P12
73 54 70 72 3brtr4d φD1˙<DP12×˙X
74 2 4 33 3 8 47 49 73 deg1sub φDP12×˙X-˙1˙=DP12×˙X
75 53 74 eqtrid φDT=DP12×˙X
76 75 72 eqtrd φDT=P12
77 76 44 eqeltrd φDT0
78 4 2 23 3 deg1nn0clb YRingTBT0SDT0
79 33 52 78 syl2anc φT0SDT0
80 77 79 mpbird φT0S
81 2 3 4 5 22 23 28 52 80 fta1g φOT-10YDT
82 81 76 breqtrd φOT-10YP12
83 hashfz1 P1201P12=P12
84 44 83 syl φ1P12=P12
85 82 84 breqtrrd φOT-10Y1P12
86 hashbnd OT-10YVP120OT-10YP12OT-10YFin
87 19 44 82 86 mp3an2i φOT-10YFin
88 fzfid φ1P12Fin
89 hashdom OT-10YFin1P12FinOT-10Y1P12OT-10Y1P12
90 87 88 89 syl2anc φOT-10Y1P12OT-10Y1P12
91 85 90 mpbid φOT-10Y1P12
92 sbth 1P12OT-10YOT-10Y1P121P12OT-10Y
93 21 91 92 syl2anc φ1P12OT-10Y
94 f1finf1o 1P12OT-10YOT-10YFinG:1P121-1OT-10YG:1P121-1 ontoOT-10Y
95 93 87 94 syl2anc φG:1P121-1OT-10YG:1P121-1 ontoOT-10Y
96 16 95 mpbid φG:1P121-1 ontoOT-10Y
97 f1ocnv G:1P121-1 ontoOT-10YG-1:OT-10Y1-1 onto1P12
98 f1of G-1:OT-10Y1-1 onto1P12G-1:OT-10Y1P12
99 96 97 98 3syl φG-1:OT-10Y1P12
100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lgsqrlem3 φLAOT-10Y
101 99 100 ffvelcdmd φG-1LA1P12
102 101 elfzelzd φG-1LA
103 fvoveq1 x=G-1LALx2=LG-1LA2
104 fvoveq1 y=xLy2=Lx2
105 104 cbvmptv y1P12Ly2=x1P12Lx2
106 13 105 eqtri G=x1P12Lx2
107 fvex LG-1LA2V
108 103 106 107 fvmpt G-1LA1P12GG-1LA=LG-1LA2
109 101 108 syl φGG-1LA=LG-1LA2
110 f1ocnvfv2 G:1P121-1 ontoOT-10YLAOT-10YGG-1LA=LA
111 96 100 110 syl2anc φGG-1LA=LA
112 109 111 eqtr3d φLG-1LA2=LA
113 prmnn PP
114 24 113 syl φP
115 114 nnnn0d φP0
116 zsqcl G-1LAG-1LA2
117 102 116 syl φG-1LA2
118 1 11 zndvds P0G-1LA2ALG-1LA2=LAPG-1LA2A
119 115 117 14 118 syl3anc φLG-1LA2=LAPG-1LA2A
120 112 119 mpbid φPG-1LA2A
121 oveq1 x=G-1LAx2=G-1LA2
122 121 oveq1d x=G-1LAx2A=G-1LA2A
123 122 breq2d x=G-1LAPx2APG-1LA2A
124 123 rspcev G-1LAPG-1LA2AxPx2A
125 102 120 124 syl2anc φxPx2A