Metamath Proof Explorer


Theorem limcperiod

Description: If F is a periodic function with period T , the limit doesn't change if we shift the limiting point by T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcperiod.f φF:domF
limcperiod.assc φA
limcperiod.3 φAdomF
limcperiod.t φT
limcperiod.b B=x|yAx=y+T
limcperiod.bss φBdomF
limcperiod.fper φyAFy+T=Fy
limcperiod.clim φCFAlimD
Assertion limcperiod φCFBlimD+T

Proof

Step Hyp Ref Expression
1 limcperiod.f φF:domF
2 limcperiod.assc φA
3 limcperiod.3 φAdomF
4 limcperiod.t φT
5 limcperiod.b B=x|yAx=y+T
6 limcperiod.bss φBdomF
7 limcperiod.fper φyAFy+T=Fy
8 limcperiod.clim φCFAlimD
9 limccl FAlimD
10 9 8 sselid φC
11 1 3 fssresd φFA:A
12 limcrcl CFAlimDFA:domFAdomFAD
13 8 12 syl φFA:domFAdomFAD
14 13 simp3d φD
15 11 2 14 ellimc3 φCFAlimDCw+z+yAyDyD<zFAyC<w
16 8 15 mpbid φCw+z+yAyDyD<zFAyC<w
17 16 simprd φw+z+yAyDyD<zFAyC<w
18 17 r19.21bi φw+z+yAyDyD<zFAyC<w
19 simpl1l φw+z+yAyDyD<zFAyC<wbBφ
20 19 adantr φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zφ
21 simplr φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zbB
22 id bBbB
23 oveq1 y=zy+T=z+T
24 23 eqeq2d y=zx=y+Tx=z+T
25 24 cbvrexvw yAx=y+TzAx=z+T
26 eqeq1 x=wx=z+Tw=z+T
27 26 rexbidv x=wzAx=z+TzAw=z+T
28 25 27 bitrid x=wyAx=y+TzAw=z+T
29 28 cbvrabv x|yAx=y+T=w|zAw=z+T
30 5 29 eqtri B=w|zAw=z+T
31 22 30 eleqtrdi bBbw|zAw=z+T
32 eqeq1 w=bw=z+Tb=z+T
33 32 rexbidv w=bzAw=z+TzAb=z+T
34 33 elrab bw|zAw=z+TbzAb=z+T
35 31 34 sylib bBbzAb=z+T
36 35 simprd bBzAb=z+T
37 36 adantl φbBzAb=z+T
38 oveq1 b=z+TbT=z+T-T
39 38 3ad2ant3 φzAb=z+TbT=z+T-T
40 2 sselda φzAz
41 4 adantr φzAT
42 40 41 pncand φzAz+T-T=z
43 42 3adant3 φzAb=z+Tz+T-T=z
44 39 43 eqtrd φzAb=z+TbT=z
45 simp2 φzAb=z+TzA
46 44 45 eqeltrd φzAb=z+TbTA
47 46 3exp φzAb=z+TbTA
48 47 adantr φbBzAb=z+TbTA
49 48 rexlimdv φbBzAb=z+TbTA
50 37 49 mpd φbBbTA
51 5 ssrab3 B
52 51 a1i φB
53 52 sselda φbBb
54 4 adantr φbBT
55 53 54 npcand φbBb-T+T=b
56 55 eqcomd φbBb=b-T+T
57 oveq1 x=bTx+T=b-T+T
58 57 rspceeqv bTAb=b-T+TxAb=x+T
59 50 56 58 syl2anc φbBxAb=x+T
60 20 21 59 syl2anc φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+T
61 nfv xφw+z+yAyDyD<zFAyC<w
62 nfrab1 _xx|yAx=y+T
63 5 62 nfcxfr _xB
64 63 nfcri xbB
65 61 64 nfan xφw+z+yAyDyD<zFAyC<wbB
66 nfv xbD+TbD+T<z
67 65 66 nfan xφw+z+yAyDyD<zFAyC<wbBbD+TbD+T<z
68 nfcv _xabs
69 nfcv _xF
70 69 63 nfres _xFB
71 nfcv _xb
72 70 71 nffv _xFBb
73 nfcv _x
74 nfcv _xC
75 72 73 74 nfov _xFBbC
76 68 75 nffv _xFBbC
77 nfcv _x<
78 nfcv _xw
79 76 77 78 nfbr xFBbC<w
80 simp3 φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+Tb=x+T
81 80 fveq2d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBb=FBx+T
82 21 3ad2ant1 φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TbB
83 80 82 eqeltrrd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+Tx+TB
84 83 fvresd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBx+T=Fx+T
85 20 3ad2ant1 φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+Tφ
86 simp2 φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TxA
87 eleq1w y=xyAxA
88 87 anbi2d y=xφyAφxA
89 fvoveq1 y=xFy+T=Fx+T
90 fveq2 y=xFy=Fx
91 89 90 eqeq12d y=xFy+T=FyFx+T=Fx
92 88 91 imbi12d y=xφyAFy+T=FyφxAFx+T=Fx
93 92 7 chvarvv φxAFx+T=Fx
94 85 86 93 syl2anc φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFx+T=Fx
95 86 fvresd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFAx=Fx
96 94 95 eqtr4d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFx+T=FAx
97 81 84 96 3eqtrd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBb=FAx
98 97 fvoveq1d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBbC=FAxC
99 simpll3 φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zyAyDyD<zFAyC<w
100 99 3ad2ant1 φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TyAyDyD<zFAyC<w
101 100 86 jca φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TyAyDyD<zFAyC<wxA
102 simp1rl φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TbD+T
103 102 neneqd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+T¬b=D+T
104 oveq1 x=Dx+T=D+T
105 80 104 sylan9eq φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+Tx=Db=D+T
106 103 105 mtand φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+T¬x=D
107 106 neqned φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TxD
108 80 oveq1d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TbD+T=x+T-D+T
109 2 sselda φxAx
110 85 86 109 syl2anc φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+Tx
111 85 14 syl φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TD
112 85 4 syl φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TT
113 110 111 112 pnpcan2d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+Tx+T-D+T=xD
114 108 113 eqtr2d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TxD=bD+T
115 114 fveq2d φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TxD=bD+T
116 simp1rr φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TbD+T<z
117 115 116 eqbrtrd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TxD<z
118 107 117 jca φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TxDxD<z
119 neeq1 y=xyDxD
120 fvoveq1 y=xyD=xD
121 120 breq1d y=xyD<zxD<z
122 119 121 anbi12d y=xyDyD<zxDxD<z
123 122 imbrov2fvoveq y=xyDyD<zFAyC<wxDxD<zFAxC<w
124 123 rspccva yAyDyD<zFAyC<wxAxDxD<zFAxC<w
125 101 118 124 sylc φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFAxC<w
126 98 125 eqbrtrd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBbC<w
127 126 3exp φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBbC<w
128 67 79 127 rexlimd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zxAb=x+TFBbC<w
129 60 128 mpd φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zFBbC<w
130 129 ex φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zFBbC<w
131 130 ralrimiva φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zFBbC<w
132 131 3exp φw+z+yAyDyD<zFAyC<wbBbD+TbD+T<zFBbC<w
133 132 reximdvai φw+z+yAyDyD<zFAyC<wz+bBbD+TbD+T<zFBbC<w
134 18 133 mpd φw+z+bBbD+TbD+T<zFBbC<w
135 134 ralrimiva φw+z+bBbD+TbD+T<zFBbC<w
136 1 6 fssresd φFB:B
137 14 4 addcld φD+T
138 136 52 137 ellimc3 φCFBlimD+TCw+z+bBbD+TbD+T<zFBbC<w
139 10 135 138 mpbir2and φCFBlimD+T