Metamath Proof Explorer


Theorem locfinref

Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf , it is expressed by exposing a function f from the original cover U , which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020)

Ref Expression
Hypotheses locfinref.x X=J
locfinref.1 φUJ
locfinref.2 φX=U
locfinref.3 φVJ
locfinref.4 φVRefU
locfinref.5 φVLocFinJ
Assertion locfinref φff:UJranfRefUranfLocFinJ

Proof

Step Hyp Ref Expression
1 locfinref.x X=J
2 locfinref.1 φUJ
3 locfinref.2 φX=U
4 locfinref.3 φVJ
5 locfinref.4 φVRefU
6 locfinref.5 φVLocFinJ
7 f0 :J
8 simpr φU=U=
9 8 feq2d φU=:UJ:J
10 7 9 mpbiri φU=:UJ
11 rn0 ran=
12 0ex V
13 refref VRef
14 12 13 ax-mp Ref
15 11 14 eqbrtri ranRef
16 15 8 breqtrrid φU=ranRefU
17 sn0top Top
18 17 a1i φU=Top
19 eqidd φU==
20 ral0 xnxnsran|snFin
21 20 a1i φU=xnxnsran|snFin
22 12 unisn =
23 22 eqcomi =
24 11 unieqi ran=
25 uni0 =
26 24 25 eqtr2i =ran
27 23 26 islocfin ranLocFinTop=xnxnsran|snFin
28 18 19 21 27 syl3anbrc φU=ranLocFin
29 3 adantr φU=X=U
30 8 unieqd φU=U=
31 29 30 eqtrd φU=X=
32 31 1 25 3eqtr3g φU=J=
33 locfintop VLocFinJJTop
34 0top JTopJ=J=
35 6 33 34 3syl φJ=J=
36 35 adantr φU=J=J=
37 32 36 mpbid φU=J=
38 37 fveq2d φU=LocFinJ=LocFin
39 28 38 eleqtrrd φU=ranLocFinJ
40 feq1 f=f:UJ:UJ
41 rneq f=ranf=ran
42 41 breq1d f=ranfRefUranRefU
43 41 eleq1d f=ranfLocFinJranLocFinJ
44 40 42 43 3anbi123d f=f:UJranfRefUranfLocFinJ:UJranRefUranLocFinJ
45 12 44 spcev :UJranRefUranLocFinJff:UJranfRefUranfLocFinJ
46 10 16 39 45 syl3anc φU=ff:UJranfRefUranfLocFinJ
47 1 2 3 4 5 6 locfinreflem φgFungdomgUrangJrangRefUrangLocFinJ
48 47 adantr φUgFungdomgUrangJrangRefUrangLocFinJ
49 simpl φUFungdomgUrangJrangRefUrangLocFinJφU
50 simprl1 φUFungdomgUrangJrangRefUrangLocFinJFung
51 fdmrn Fungg:domgrang
52 50 51 sylib φUFungdomgUrangJrangRefUrangLocFinJg:domgrang
53 simprl3 φUFungdomgUrangJrangRefUrangLocFinJrangJ
54 52 53 fssd φUFungdomgUrangJrangRefUrangLocFinJg:domgJ
55 fconstg VUdomg×:Udomg
56 12 55 mp1i φUFungdomgUrangJrangRefUrangLocFinJUdomg×:Udomg
57 0opn JTopJ
58 6 33 57 3syl φJ
59 58 ad2antrr φUFungdomgUrangJrangRefUrangLocFinJJ
60 59 snssd φUFungdomgUrangJrangRefUrangLocFinJJ
61 56 60 fssd φUFungdomgUrangJrangRefUrangLocFinJUdomg×:UdomgJ
62 disjdif domgUdomg=
63 62 a1i φUFungdomgUrangJrangRefUrangLocFinJdomgUdomg=
64 fun2 g:domgJUdomg×:UdomgJdomgUdomg=gUdomg×:domgUdomgJ
65 54 61 63 64 syl21anc φUFungdomgUrangJrangRefUrangLocFinJgUdomg×:domgUdomgJ
66 simprl2 φUFungdomgUrangJrangRefUrangLocFinJdomgU
67 undif domgUdomgUdomg=U
68 66 67 sylib φUFungdomgUrangJrangRefUrangLocFinJdomgUdomg=U
69 68 feq2d φUFungdomgUrangJrangRefUrangLocFinJgUdomg×:domgUdomgJgUdomg×:UJ
70 65 69 mpbid φUFungdomgUrangJrangRefUrangLocFinJgUdomg×:UJ
71 simpr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×=rang
72 simprrl φUFungdomgUrangJrangRefUrangLocFinJrangRefU
73 72 adantr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangRefU
74 71 73 eqbrtrd φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×RefU
75 simpr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×=rang
76 49 simprd φUFungdomgUrangJrangRefUrangLocFinJU
77 refun0 rangRefUUrangRefU
78 72 76 77 syl2anc φUFungdomgUrangJrangRefUrangLocFinJrangRefU
79 78 adantr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangRefU
80 75 79 eqbrtrd φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×RefU
81 rnxpss ranUdomg×
82 sssn ranUdomg×ranUdomg×=ranUdomg×=
83 81 82 mpbi ranUdomg×=ranUdomg×=
84 rnun rangUdomg×=rangranUdomg×
85 uneq2 ranUdomg×=rangranUdomg×=rang
86 84 85 eqtrid ranUdomg×=rangUdomg×=rang
87 un0 rang=rang
88 86 87 eqtrdi ranUdomg×=rangUdomg×=rang
89 uneq2 ranUdomg×=rangranUdomg×=rang
90 84 89 eqtrid ranUdomg×=rangUdomg×=rang
91 88 90 orim12i ranUdomg×=ranUdomg×=rangUdomg×=rangrangUdomg×=rang
92 83 91 mp1i φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×=rang
93 74 80 92 mpjaodan φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×RefU
94 simprrr φUFungdomgUrangJrangRefUrangLocFinJrangLocFinJ
95 94 adantr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangLocFinJ
96 71 95 eqeltrd φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×LocFinJ
97 94 adantr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangLocFinJ
98 snfi Fin
99 98 a1i φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangFin
100 59 adantr φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangJ
101 100 snssd φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangJ
102 101 unissd φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangJ
103 lfinun rangLocFinJFinJrangLocFinJ
104 97 99 102 103 syl3anc φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangLocFinJ
105 75 104 eqeltrd φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×=rangrangUdomg×LocFinJ
106 96 105 92 mpjaodan φUFungdomgUrangJrangRefUrangLocFinJrangUdomg×LocFinJ
107 refrel RelRef
108 107 brrelex2i VRefUUV
109 difexg UVUdomgV
110 5 108 109 3syl φUdomgV
111 110 adantr φUUdomgV
112 p0ex V
113 xpexg UdomgVVUdomg×V
114 112 113 mpan2 UdomgVUdomg×V
115 vex gV
116 unexg gVUdomg×VgUdomg×V
117 115 116 mpan Udomg×VgUdomg×V
118 feq1 f=gUdomg×f:UJgUdomg×:UJ
119 rneq f=gUdomg×ranf=rangUdomg×
120 119 breq1d f=gUdomg×ranfRefUrangUdomg×RefU
121 119 eleq1d f=gUdomg×ranfLocFinJrangUdomg×LocFinJ
122 118 120 121 3anbi123d f=gUdomg×f:UJranfRefUranfLocFinJgUdomg×:UJrangUdomg×RefUrangUdomg×LocFinJ
123 122 spcegv gUdomg×VgUdomg×:UJrangUdomg×RefUrangUdomg×LocFinJff:UJranfRefUranfLocFinJ
124 111 114 117 123 4syl φUgUdomg×:UJrangUdomg×RefUrangUdomg×LocFinJff:UJranfRefUranfLocFinJ
125 124 imp φUgUdomg×:UJrangUdomg×RefUrangUdomg×LocFinJff:UJranfRefUranfLocFinJ
126 49 70 93 106 125 syl13anc φUFungdomgUrangJrangRefUrangLocFinJff:UJranfRefUranfLocFinJ
127 48 126 exlimddv φUff:UJranfRefUranfLocFinJ
128 46 127 pm2.61dane φff:UJranfRefUranfLocFinJ