Step |
Hyp |
Ref |
Expression |
1 |
|
locfinref.x |
|
2 |
|
locfinref.1 |
|
3 |
|
locfinref.2 |
|
4 |
|
locfinref.3 |
|
5 |
|
locfinref.4 |
|
6 |
|
locfinref.5 |
|
7 |
|
f0 |
|
8 |
|
simpr |
|
9 |
8
|
feq2d |
|
10 |
7 9
|
mpbiri |
|
11 |
|
rn0 |
|
12 |
|
0ex |
|
13 |
|
refref |
|
14 |
12 13
|
ax-mp |
|
15 |
11 14
|
eqbrtri |
|
16 |
15 8
|
breqtrrid |
|
17 |
|
sn0top |
|
18 |
17
|
a1i |
|
19 |
|
eqidd |
|
20 |
|
ral0 |
|
21 |
20
|
a1i |
|
22 |
12
|
unisn |
|
23 |
22
|
eqcomi |
|
24 |
11
|
unieqi |
|
25 |
|
uni0 |
|
26 |
24 25
|
eqtr2i |
|
27 |
23 26
|
islocfin |
|
28 |
18 19 21 27
|
syl3anbrc |
|
29 |
3
|
adantr |
|
30 |
8
|
unieqd |
|
31 |
29 30
|
eqtrd |
|
32 |
31 1 25
|
3eqtr3g |
|
33 |
|
locfintop |
|
34 |
|
0top |
|
35 |
6 33 34
|
3syl |
|
36 |
35
|
adantr |
|
37 |
32 36
|
mpbid |
|
38 |
37
|
fveq2d |
|
39 |
28 38
|
eleqtrrd |
|
40 |
|
feq1 |
|
41 |
|
rneq |
|
42 |
41
|
breq1d |
|
43 |
41
|
eleq1d |
|
44 |
40 42 43
|
3anbi123d |
|
45 |
12 44
|
spcev |
|
46 |
10 16 39 45
|
syl3anc |
|
47 |
1 2 3 4 5 6
|
locfinreflem |
|
48 |
47
|
adantr |
|
49 |
|
simpl |
|
50 |
|
simprl1 |
|
51 |
|
fdmrn |
|
52 |
50 51
|
sylib |
|
53 |
|
simprl3 |
|
54 |
52 53
|
fssd |
|
55 |
|
fconstg |
|
56 |
12 55
|
mp1i |
|
57 |
|
0opn |
|
58 |
6 33 57
|
3syl |
|
59 |
58
|
ad2antrr |
|
60 |
59
|
snssd |
|
61 |
56 60
|
fssd |
|
62 |
|
disjdif |
|
63 |
62
|
a1i |
|
64 |
|
fun2 |
|
65 |
54 61 63 64
|
syl21anc |
|
66 |
|
simprl2 |
|
67 |
|
undif |
|
68 |
66 67
|
sylib |
|
69 |
68
|
feq2d |
|
70 |
65 69
|
mpbid |
|
71 |
|
simpr |
|
72 |
|
simprrl |
|
73 |
72
|
adantr |
|
74 |
71 73
|
eqbrtrd |
|
75 |
|
simpr |
|
76 |
49
|
simprd |
|
77 |
|
refun0 |
|
78 |
72 76 77
|
syl2anc |
|
79 |
78
|
adantr |
|
80 |
75 79
|
eqbrtrd |
|
81 |
|
rnxpss |
|
82 |
|
sssn |
|
83 |
81 82
|
mpbi |
|
84 |
|
rnun |
|
85 |
|
uneq2 |
|
86 |
84 85
|
eqtrid |
|
87 |
|
un0 |
|
88 |
86 87
|
eqtrdi |
|
89 |
|
uneq2 |
|
90 |
84 89
|
eqtrid |
|
91 |
88 90
|
orim12i |
|
92 |
83 91
|
mp1i |
|
93 |
74 80 92
|
mpjaodan |
|
94 |
|
simprrr |
|
95 |
94
|
adantr |
|
96 |
71 95
|
eqeltrd |
|
97 |
94
|
adantr |
|
98 |
|
snfi |
|
99 |
98
|
a1i |
|
100 |
59
|
adantr |
|
101 |
100
|
snssd |
|
102 |
101
|
unissd |
|
103 |
|
lfinun |
|
104 |
97 99 102 103
|
syl3anc |
|
105 |
75 104
|
eqeltrd |
|
106 |
96 105 92
|
mpjaodan |
|
107 |
|
refrel |
|
108 |
107
|
brrelex2i |
|
109 |
|
difexg |
|
110 |
5 108 109
|
3syl |
|
111 |
110
|
adantr |
|
112 |
|
p0ex |
|
113 |
|
xpexg |
|
114 |
112 113
|
mpan2 |
|
115 |
|
vex |
|
116 |
|
unexg |
|
117 |
115 116
|
mpan |
|
118 |
|
feq1 |
|
119 |
|
rneq |
|
120 |
119
|
breq1d |
|
121 |
119
|
eleq1d |
|
122 |
118 120 121
|
3anbi123d |
|
123 |
122
|
spcegv |
|
124 |
111 114 117 123
|
4syl |
|
125 |
124
|
imp |
|
126 |
49 70 93 106 125
|
syl13anc |
|
127 |
48 126
|
exlimddv |
|
128 |
46 127
|
pm2.61dane |
|