Metamath Proof Explorer


Theorem mapdrvallem2

Description: Lemma for mapdrval . TODO: very long antecedents are dragged through proof in some places - see if it shortens proof to remove unused conjuncts. (Contributed by NM, 2-Feb-2015)

Ref Expression
Hypotheses mapdrval.h H=LHypK
mapdrval.o O=ocHKW
mapdrval.m M=mapdKW
mapdrval.u U=DVecHKW
mapdrval.s S=LSubSpU
mapdrval.f F=LFnlU
mapdrval.l L=LKerU
mapdrval.d D=LDualU
mapdrval.t T=LSubSpD
mapdrval.c C=gF|OOLg=Lg
mapdrval.k φKHLWH
mapdrval.r φRT
mapdrval.e φRC
mapdrval.q Q=hROLh
mapdrval.v V=BaseU
mapdrvallem2.a A=LSAtomsU
mapdrvallem2.n N=LSpanU
mapdrvallem2.z 0˙=0U
mapdrvallem2.y Y=0D
Assertion mapdrvallem2 φfC|OLfQR

Proof

Step Hyp Ref Expression
1 mapdrval.h H=LHypK
2 mapdrval.o O=ocHKW
3 mapdrval.m M=mapdKW
4 mapdrval.u U=DVecHKW
5 mapdrval.s S=LSubSpU
6 mapdrval.f F=LFnlU
7 mapdrval.l L=LKerU
8 mapdrval.d D=LDualU
9 mapdrval.t T=LSubSpD
10 mapdrval.c C=gF|OOLg=Lg
11 mapdrval.k φKHLWH
12 mapdrval.r φRT
13 mapdrval.e φRC
14 mapdrval.q Q=hROLh
15 mapdrval.v V=BaseU
16 mapdrvallem2.a A=LSAtomsU
17 mapdrvallem2.n N=LSpanU
18 mapdrvallem2.z 0˙=0U
19 mapdrvallem2.y Y=0D
20 eleq1 f=YfRYR
21 11 3ad2ant1 φfCOLfQKHLWH
22 21 adantr φfCOLfQfYKHLWH
23 simpl2 φfCOLfQfYfC
24 simpr φfCOLfQfYfY
25 eldifsn fCYfCfY
26 23 24 25 sylanbrc φfCOLfQfYfCY
27 1 2 4 15 17 18 6 7 8 19 10 22 26 lcfl8b φfCOLfQfYxV0˙OLf=Nx
28 simp1l3 φfCOLfQfYxV0˙OLf=NxOLfQ
29 eqimss2 OLf=NxNxOLf
30 29 3ad2ant3 φfCOLfQfYxV0˙OLf=NxNxOLf
31 1 4 11 dvhlmod φULMod
32 31 3ad2ant1 φfCOLfQULMod
33 32 adantr φfCOLfQfYULMod
34 33 3ad2ant1 φfCOLfQfYxV0˙OLf=NxULMod
35 22 3ad2ant1 φfCOLfQfYxV0˙OLf=NxKHLWH
36 10 lcfl1lem fCfFOOLf=Lf
37 36 simplbi fCfF
38 37 3ad2ant2 φfCOLfQfF
39 38 adantr φfCOLfQfYfF
40 39 3ad2ant1 φfCOLfQfYxV0˙OLf=NxfF
41 15 6 7 34 40 lkrssv φfCOLfQfYxV0˙OLf=NxLfV
42 1 4 15 5 2 dochlss KHLWHLfVOLfS
43 35 41 42 syl2anc φfCOLfQfYxV0˙OLf=NxOLfS
44 eldifi xV0˙xV
45 44 3ad2ant2 φfCOLfQfYxV0˙OLf=NxxV
46 15 5 17 34 43 45 lspsnel5 φfCOLfQfYxV0˙OLf=NxxOLfNxOLf
47 30 46 mpbird φfCOLfQfYxV0˙OLf=NxxOLf
48 28 47 sseldd φfCOLfQfYxV0˙OLf=NxxQ
49 48 14 eleqtrdi φfCOLfQfYxV0˙OLf=NxxhROLh
50 eliun xhROLhhRxOLh
51 49 50 sylib φfCOLfQfYxV0˙OLf=NxhRxOLh
52 eqid ScalarU=ScalarU
53 eqid BaseScalarU=BaseScalarU
54 eqid D=D
55 1 4 11 dvhlvec φULVec
56 55 3ad2ant1 φfCOLfQULVec
57 56 adantr φfCOLfQfYULVec
58 57 3ad2ant1 φfCOLfQfYxV0˙OLf=NxULVec
59 58 ad2antrr φfCOLfQfYxV0˙OLf=NxhRxOLhULVec
60 simpr φfCOLfQfYxV0˙OLf=NxhRhR
61 simp1l1 φfCOLfQfYxV0˙OLf=Nxφ
62 61 adantr φfCOLfQfYxV0˙OLf=NxhRφ
63 62 13 syl φfCOLfQfYxV0˙OLf=NxhRRC
64 63 sseld φfCOLfQfYxV0˙OLf=NxhRhRhC
65 10 lcfl1lem hChFOOLh=Lh
66 65 simplbi hChF
67 64 66 syl6 φfCOLfQfYxV0˙OLf=NxhRhRhF
68 60 67 mpd φfCOLfQfYxV0˙OLf=NxhRhF
69 68 adantr φfCOLfQfYxV0˙OLf=NxhRxOLhhF
70 40 ad2antrr φfCOLfQfYxV0˙OLf=NxhRxOLhfF
71 simpll3 φfCOLfQfYxV0˙OLf=NxhRxOLhOLf=Nx
72 34 ad2antrr φfCOLfQfYxV0˙OLf=NxhRxOLhULMod
73 35 ad2antrr φfCOLfQfYxV0˙OLf=NxhRxOLhKHLWH
74 15 6 7 72 69 lkrssv φfCOLfQfYxV0˙OLf=NxhRxOLhLhV
75 1 4 15 5 2 dochlss KHLWHLhVOLhS
76 73 74 75 syl2anc φfCOLfQfYxV0˙OLf=NxhRxOLhOLhS
77 simpr φfCOLfQfYxV0˙OLf=NxhRxOLhxOLh
78 5 17 72 76 77 lspsnel5a φfCOLfQfYxV0˙OLf=NxhRxOLhNxOLh
79 simpll2 φfCOLfQfYxV0˙OLf=NxhRxOLhxV0˙
80 15 17 18 16 72 79 lsatlspsn φfCOLfQfYxV0˙OLf=NxhRxOLhNxA
81 1 2 4 18 16 6 7 73 69 dochsat0 φfCOLfQfYxV0˙OLf=NxhRxOLhOLhAOLh=0˙
82 18 16 59 80 81 lsatcmp2 φfCOLfQfYxV0˙OLf=NxhRxOLhNxOLhNx=OLh
83 78 82 mpbid φfCOLfQfYxV0˙OLf=NxhRxOLhNx=OLh
84 71 83 eqtr2d φfCOLfQfYxV0˙OLf=NxhRxOLhOLh=OLf
85 eqid DIsoHKW=DIsoHKW
86 61 13 syl φfCOLfQfYxV0˙OLf=NxRC
87 86 sselda φfCOLfQfYxV0˙OLf=NxhRhC
88 87 adantr φfCOLfQfYxV0˙OLf=NxhRxOLhhC
89 1 85 2 4 6 7 10 73 69 lcfl5 φfCOLfQfYxV0˙OLf=NxhRxOLhhCLhranDIsoHKW
90 88 89 mpbid φfCOLfQfYxV0˙OLf=NxhRxOLhLhranDIsoHKW
91 simp1l2 φfCOLfQfYxV0˙OLf=NxfC
92 91 ad2antrr φfCOLfQfYxV0˙OLf=NxhRxOLhfC
93 1 85 2 4 6 7 10 73 70 lcfl5 φfCOLfQfYxV0˙OLf=NxhRxOLhfCLfranDIsoHKW
94 92 93 mpbid φfCOLfQfYxV0˙OLf=NxhRxOLhLfranDIsoHKW
95 1 85 2 73 90 94 doch11 φfCOLfQfYxV0˙OLf=NxhRxOLhOLh=OLfLh=Lf
96 84 95 mpbid φfCOLfQfYxV0˙OLf=NxhRxOLhLh=Lf
97 52 53 6 7 8 54 59 69 70 96 eqlkr4 φfCOLfQfYxV0˙OLf=NxhRxOLhrBaseScalarUf=rDh
98 97 ex φfCOLfQfYxV0˙OLf=NxhRxOLhrBaseScalarUf=rDh
99 98 reximdva φfCOLfQfYxV0˙OLf=NxhRxOLhhRrBaseScalarUf=rDh
100 51 99 mpd φfCOLfQfYxV0˙OLf=NxhRrBaseScalarUf=rDh
101 eleq1 f=rDhfRrDhR
102 101 reximi rBaseScalarUf=rDhrBaseScalarUfRrDhR
103 102 reximi hRrBaseScalarUf=rDhhRrBaseScalarUfRrDhR
104 rexcom hRrBaseScalarUfRrDhRrBaseScalarUhRfRrDhR
105 df-rex hRfRrDhRhhRfRrDhR
106 105 rexbii rBaseScalarUhRfRrDhRrBaseScalarUhhRfRrDhR
107 104 106 bitri hRrBaseScalarUfRrDhRrBaseScalarUhhRfRrDhR
108 103 107 sylib hRrBaseScalarUf=rDhrBaseScalarUhhRfRrDhR
109 100 108 syl φfCOLfQfYxV0˙OLf=NxrBaseScalarUhhRfRrDhR
110 33 ad2antrr φfCOLfQfYrBaseScalarUhRfRrDhRULMod
111 12 3ad2ant1 φfCOLfQRT
112 111 adantr φfCOLfQfYRT
113 112 ad2antrr φfCOLfQfYrBaseScalarUhRfRrDhRRT
114 simplr φfCOLfQfYrBaseScalarUhRfRrDhRrBaseScalarU
115 simprl φfCOLfQfYrBaseScalarUhRfRrDhRhR
116 52 53 8 54 9 110 113 114 115 ldualssvscl φfCOLfQfYrBaseScalarUhRfRrDhRrDhR
117 biimpr fRrDhRrDhRfR
118 117 ad2antll φfCOLfQfYrBaseScalarUhRfRrDhRrDhRfR
119 116 118 mpd φfCOLfQfYrBaseScalarUhRfRrDhRfR
120 119 ex φfCOLfQfYrBaseScalarUhRfRrDhRfR
121 120 exlimdv φfCOLfQfYrBaseScalarUhhRfRrDhRfR
122 121 rexlimdva φfCOLfQfYrBaseScalarUhhRfRrDhRfR
123 122 3ad2ant1 φfCOLfQfYxV0˙OLf=NxrBaseScalarUhhRfRrDhRfR
124 109 123 mpd φfCOLfQfYxV0˙OLf=NxfR
125 124 rexlimdv3a φfCOLfQfYxV0˙OLf=NxfR
126 27 125 mpd φfCOLfQfYfR
127 8 31 lduallmod φDLMod
128 127 3ad2ant1 φfCOLfQDLMod
129 19 9 lss0cl DLModRTYR
130 128 111 129 syl2anc φfCOLfQYR
131 20 126 130 pm2.61ne φfCOLfQfR
132 131 rabssdv φfC|OLfQR