Metamath Proof Explorer


Theorem mbfmulc2lem

Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Hypotheses mbfmulc2re.1 φFMblFn
mbfmulc2re.2 φB
mbfmulc2lem.3 φF:A
Assertion mbfmulc2lem φA×B×fFMblFn

Proof

Step Hyp Ref Expression
1 mbfmulc2re.1 φFMblFn
2 mbfmulc2re.2 φB
3 mbfmulc2lem.3 φF:A
4 remulcl xyxy
5 4 adantl φxyxy
6 fconst6g BA×B:A
7 2 6 syl φA×B:A
8 3 fdmd φdomF=A
9 mbfdm FMblFndomFdomvol
10 1 9 syl φdomFdomvol
11 8 10 eqeltrrd φAdomvol
12 inidm AA=A
13 5 7 3 11 11 12 off φA×B×fF:A
14 13 adantr φB<0A×B×fF:A
15 11 adantr φB<0Adomvol
16 simprl φB<0yzAy
17 16 rexrd φB<0yzAy*
18 elioopnf y*A×B×fFzy+∞A×B×fFzy<A×B×fFz
19 17 18 syl φB<0yzAA×B×fFzy+∞A×B×fFzy<A×B×fFz
20 13 ffvelcdmda φzAA×B×fFz
21 20 ad2ant2rl φB<0yzAA×B×fFz
22 21 biantrurd φB<0yzAy<A×B×fFzA×B×fFzy<A×B×fFz
23 3 ffvelcdmda φzAFz
24 23 ad2ant2rl φB<0yzAFz
25 24 biantrurd φB<0yzAFz<yBFzFz<yB
26 simprr φB<0yzAzA
27 11 ad2antrr φB<0yzAAdomvol
28 2 ad2antrr φB<0yzAB
29 3 ad2antrr φB<0yzAF:A
30 29 ffnd φB<0yzAFFnA
31 eqidd φB<0yzAzAFz=Fz
32 27 28 30 31 ofc1 φB<0yzAzAA×B×fFz=BFz
33 26 32 mpdan φB<0yzAA×B×fFz=BFz
34 33 breq2d φB<0yzAy<A×B×fFzy<BFz
35 33 21 eqeltrrd φB<0yzABFz
36 16 35 ltnegd φB<0yzAy<BFzBFz<y
37 28 recnd φB<0yzAB
38 24 recnd φB<0yzAFz
39 37 38 mulneg1d φB<0yzABFz=BFz
40 39 breq1d φB<0yzABFz<yBFz<y
41 16 renegcld φB<0yzAy
42 28 renegcld φB<0yzAB
43 simplr φB<0yzAB<0
44 28 lt0neg1d φB<0yzAB<00<B
45 43 44 mpbid φB<0yzA0<B
46 ltmuldiv2 FzyB0<BBFz<yFz<yB
47 24 41 42 45 46 syl112anc φB<0yzABFz<yFz<yB
48 36 40 47 3bitr2rd φB<0yzAFz<yBy<BFz
49 16 recnd φB<0yzAy
50 43 lt0ne0d φB<0yzAB0
51 49 37 50 div2negd φB<0yzAyB=yB
52 51 breq2d φB<0yzAFz<yBFz<yB
53 34 48 52 3bitr2d φB<0yzAy<A×B×fFzFz<yB
54 16 28 50 redivcld φB<0yzAyB
55 54 rexrd φB<0yzAyB*
56 elioomnf yB*Fz−∞yBFzFz<yB
57 55 56 syl φB<0yzAFz−∞yBFzFz<yB
58 25 53 57 3bitr4d φB<0yzAy<A×B×fFzFz−∞yB
59 19 22 58 3bitr2d φB<0yzAA×B×fFzy+∞Fz−∞yB
60 59 anassrs φB<0yzAA×B×fFzy+∞Fz−∞yB
61 60 pm5.32da φB<0yzAA×B×fFzy+∞zAFz−∞yB
62 13 ffnd φA×B×fFFnA
63 62 ad2antrr φB<0yA×B×fFFnA
64 elpreima A×B×fFFnAzA×B×fF-1y+∞zAA×B×fFzy+∞
65 63 64 syl φB<0yzA×B×fF-1y+∞zAA×B×fFzy+∞
66 3 ffnd φFFnA
67 66 ad2antrr φB<0yFFnA
68 elpreima FFnAzF-1−∞yBzAFz−∞yB
69 67 68 syl φB<0yzF-1−∞yBzAFz−∞yB
70 61 65 69 3bitr4d φB<0yzA×B×fF-1y+∞zF-1−∞yB
71 70 eqrdv φB<0yA×B×fF-1y+∞=F-1−∞yB
72 mbfima FMblFnF:AF-1−∞yBdomvol
73 1 3 72 syl2anc φF-1−∞yBdomvol
74 73 ad2antrr φB<0yF-1−∞yBdomvol
75 71 74 eqeltrd φB<0yA×B×fF-1y+∞domvol
76 elioomnf y*A×B×fFz−∞yA×B×fFzA×B×fFz<y
77 17 76 syl φB<0yzAA×B×fFz−∞yA×B×fFzA×B×fFz<y
78 21 biantrurd φB<0yzAA×B×fFz<yA×B×fFzA×B×fFz<y
79 24 biantrurd φB<0yzAyB<FzFzyB<Fz
80 33 breq1d φB<0yzAA×B×fFz<yBFz<y
81 39 breq2d φB<0yzAy<BFzy<BFz
82 51 breq1d φB<0yzAyB<FzyB<Fz
83 ltdivmul yFzB0<ByB<Fzy<BFz
84 41 24 42 45 83 syl112anc φB<0yzAyB<Fzy<BFz
85 82 84 bitr3d φB<0yzAyB<Fzy<BFz
86 35 16 ltnegd φB<0yzABFz<yy<BFz
87 81 85 86 3bitr4d φB<0yzAyB<FzBFz<y
88 80 87 bitr4d φB<0yzAA×B×fFz<yyB<Fz
89 elioopnf yB*FzyB+∞FzyB<Fz
90 55 89 syl φB<0yzAFzyB+∞FzyB<Fz
91 79 88 90 3bitr4d φB<0yzAA×B×fFz<yFzyB+∞
92 77 78 91 3bitr2d φB<0yzAA×B×fFz−∞yFzyB+∞
93 92 anassrs φB<0yzAA×B×fFz−∞yFzyB+∞
94 93 pm5.32da φB<0yzAA×B×fFz−∞yzAFzyB+∞
95 elpreima A×B×fFFnAzA×B×fF-1−∞yzAA×B×fFz−∞y
96 63 95 syl φB<0yzA×B×fF-1−∞yzAA×B×fFz−∞y
97 elpreima FFnAzF-1yB+∞zAFzyB+∞
98 67 97 syl φB<0yzF-1yB+∞zAFzyB+∞
99 94 96 98 3bitr4d φB<0yzA×B×fF-1−∞yzF-1yB+∞
100 99 eqrdv φB<0yA×B×fF-1−∞y=F-1yB+∞
101 mbfima FMblFnF:AF-1yB+∞domvol
102 1 3 101 syl2anc φF-1yB+∞domvol
103 102 ad2antrr φB<0yF-1yB+∞domvol
104 100 103 eqeltrd φB<0yA×B×fF-1−∞ydomvol
105 14 15 75 104 ismbf2d φB<0A×B×fFMblFn
106 11 adantr φB=0Adomvol
107 3 adantr φB=0F:A
108 simpr φB=0B=0
109 0cn 0
110 108 109 eqeltrdi φB=0B
111 0cnd φB=00
112 simplr φB=0xB=0
113 112 oveq1d φB=0xBx=0x
114 mul02lem2 x0x=0
115 114 adantl φB=0x0x=0
116 113 115 eqtrd φB=0xBx=0
117 106 107 110 111 116 caofid2 φB=0A×B×fF=A×0
118 mbfconst Adomvol0A×0MblFn
119 106 109 118 sylancl φB=0A×0MblFn
120 117 119 eqeltrd φB=0A×B×fFMblFn
121 13 adantr φ0<BA×B×fF:A
122 11 adantr φ0<BAdomvol
123 simprl φ0<ByzAy
124 123 rexrd φ0<ByzAy*
125 124 18 syl φ0<ByzAA×B×fFzy+∞A×B×fFzy<A×B×fFz
126 20 ad2ant2rl φ0<ByzAA×B×fFz
127 126 biantrurd φ0<ByzAy<A×B×fFzA×B×fFzy<A×B×fFz
128 23 ad2ant2rl φ0<ByzAFz
129 128 biantrurd φ0<ByzAyB<FzFzyB<Fz
130 eqidd φzAFz=Fz
131 11 2 66 130 ofc1 φzAA×B×fFz=BFz
132 131 ad2ant2rl φ0<ByzAA×B×fFz=BFz
133 132 breq2d φ0<ByzAy<A×B×fFzy<BFz
134 2 ad2antrr φ0<ByzAB
135 simplr φ0<ByzA0<B
136 ltdivmul yFzB0<ByB<Fzy<BFz
137 123 128 134 135 136 syl112anc φ0<ByzAyB<Fzy<BFz
138 133 137 bitr4d φ0<ByzAy<A×B×fFzyB<Fz
139 134 135 elrpd φ0<ByzAB+
140 123 139 rerpdivcld φ0<ByzAyB
141 140 rexrd φ0<ByzAyB*
142 141 89 syl φ0<ByzAFzyB+∞FzyB<Fz
143 129 138 142 3bitr4d φ0<ByzAy<A×B×fFzFzyB+∞
144 125 127 143 3bitr2d φ0<ByzAA×B×fFzy+∞FzyB+∞
145 144 anassrs φ0<ByzAA×B×fFzy+∞FzyB+∞
146 145 pm5.32da φ0<ByzAA×B×fFzy+∞zAFzyB+∞
147 62 ad2antrr φ0<ByA×B×fFFnA
148 147 64 syl φ0<ByzA×B×fF-1y+∞zAA×B×fFzy+∞
149 66 ad2antrr φ0<ByFFnA
150 149 97 syl φ0<ByzF-1yB+∞zAFzyB+∞
151 146 148 150 3bitr4d φ0<ByzA×B×fF-1y+∞zF-1yB+∞
152 151 eqrdv φ0<ByA×B×fF-1y+∞=F-1yB+∞
153 102 ad2antrr φ0<ByF-1yB+∞domvol
154 152 153 eqeltrd φ0<ByA×B×fF-1y+∞domvol
155 124 76 syl φ0<ByzAA×B×fFz−∞yA×B×fFzA×B×fFz<y
156 126 biantrurd φ0<ByzAA×B×fFz<yA×B×fFzA×B×fFz<y
157 ltmuldiv2 FzyB0<BBFz<yFz<yB
158 128 123 134 135 157 syl112anc φ0<ByzABFz<yFz<yB
159 132 breq1d φ0<ByzAA×B×fFz<yBFz<y
160 141 56 syl φ0<ByzAFz−∞yBFzFz<yB
161 128 160 mpbirand φ0<ByzAFz−∞yBFz<yB
162 158 159 161 3bitr4d φ0<ByzAA×B×fFz<yFz−∞yB
163 155 156 162 3bitr2d φ0<ByzAA×B×fFz−∞yFz−∞yB
164 163 anassrs φ0<ByzAA×B×fFz−∞yFz−∞yB
165 164 pm5.32da φ0<ByzAA×B×fFz−∞yzAFz−∞yB
166 147 95 syl φ0<ByzA×B×fF-1−∞yzAA×B×fFz−∞y
167 149 68 syl φ0<ByzF-1−∞yBzAFz−∞yB
168 165 166 167 3bitr4d φ0<ByzA×B×fF-1−∞yzF-1−∞yB
169 168 eqrdv φ0<ByA×B×fF-1−∞y=F-1−∞yB
170 73 ad2antrr φ0<ByF-1−∞yBdomvol
171 169 170 eqeltrd φ0<ByA×B×fF-1−∞ydomvol
172 121 122 154 171 ismbf2d φ0<BA×B×fFMblFn
173 0re 0
174 lttri4 B0B<0B=00<B
175 2 173 174 sylancl φB<0B=00<B
176 105 120 172 175 mpjao3dan φA×B×fFMblFn