Metamath Proof Explorer


Theorem mclsppslem

Description: The closure is closed under application of provable pre-statements. (Compare mclsax .) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclspps.d D=mDVT
mclspps.e E=mExT
mclspps.c C=mClsT
mclspps.1 φTmFS
mclspps.2 φKD
mclspps.3 φBE
mclspps.j J=mPPStT
mclspps.l L=mSubstT
mclspps.v V=mVRT
mclspps.h H=mVHT
mclspps.w W=mVarsT
mclspps.4 φMOPJ
mclspps.5 φSranL
mclspps.6 φxOSxKCB
mclspps.7 φvVSHvKCB
mclspps.8 φxMyaWSHxbWSHyaKb
mclsppslem.9 φmopmAxT
mclsppslem.10 φsranL
mclsppslem.11 φsoranHS-1KCB
mclsppslem.12 φzwzmwWsHz×WsHwM
Assertion mclsppslem φspS-1KCB

Proof

Step Hyp Ref Expression
1 mclspps.d D=mDVT
2 mclspps.e E=mExT
3 mclspps.c C=mClsT
4 mclspps.1 φTmFS
5 mclspps.2 φKD
6 mclspps.3 φBE
7 mclspps.j J=mPPStT
8 mclspps.l L=mSubstT
9 mclspps.v V=mVRT
10 mclspps.h H=mVHT
11 mclspps.w W=mVarsT
12 mclspps.4 φMOPJ
13 mclspps.5 φSranL
14 mclspps.6 φxOSxKCB
15 mclspps.7 φvVSHvKCB
16 mclspps.8 φxMyaWSHxbWSHyaKb
17 mclsppslem.9 φmopmAxT
18 mclsppslem.10 φsranL
19 mclsppslem.11 φsoranHS-1KCB
20 mclsppslem.12 φzwzmwWsHz×WsHwM
21 8 2 msubf sranLs:EE
22 18 21 syl φs:EE
23 eqid mAxT=mAxT
24 eqid mStatT=mStatT
25 23 24 maxsta TmFSmAxTmStatT
26 4 25 syl φmAxTmStatT
27 eqid mPreStT=mPreStT
28 27 24 mstapst mStatTmPreStT
29 26 28 sstrdi φmAxTmPreStT
30 29 17 sseldd φmopmPreStT
31 1 2 27 elmpst mopmPreStTmDm-1=moEoFinpE
32 30 31 sylib φmDm-1=moEoFinpE
33 32 simp3d φpE
34 22 33 ffvelcdmd φspE
35 fvco3 s:EEpESsp=Ssp
36 22 33 35 syl2anc φSsp=Ssp
37 8 msubco SranLsranLSsranL
38 13 18 37 syl2anc φSsranL
39 8 2 msubf SranLS:EE
40 13 39 syl φS:EE
41 fco S:EEs:EESs:EE
42 40 22 41 syl2anc φSs:EE
43 42 ffnd φSsFnE
44 43 adantr φcoSsFnE
45 22 ffund φFuns
46 31 simp2bi mopmPreStToEoFin
47 30 46 syl φoEoFin
48 47 simpld φoE
49 9 2 10 mvhf TmFSH:VE
50 frn H:VEranHE
51 4 49 50 3syl φranHE
52 48 51 unssd φoranHE
53 22 fdmd φdoms=E
54 52 53 sseqtrrd φoranHdoms
55 funimass3 FunsoranHdomssoranHS-1KCBoranHs-1S-1KCB
56 45 54 55 syl2anc φsoranHS-1KCBoranHs-1S-1KCB
57 19 56 mpbid φoranHs-1S-1KCB
58 cnvco Ss-1=s-1S-1
59 58 imaeq1i Ss-1KCB=s-1S-1KCB
60 imaco s-1S-1KCB=s-1S-1KCB
61 59 60 eqtri Ss-1KCB=s-1S-1KCB
62 57 61 sseqtrrdi φoranHSs-1KCB
63 62 unssad φoSs-1KCB
64 63 sselda φcocSs-1KCB
65 elpreima SsFnEcSs-1KCBcESscKCB
66 65 simplbda SsFnEcSs-1KCBSscKCB
67 44 64 66 syl2anc φcoSscKCB
68 43 adantr φtVSsFnE
69 62 unssbd φranHSs-1KCB
70 69 adantr φtVranHSs-1KCB
71 ffn H:VEHFnV
72 4 49 71 3syl φHFnV
73 fnfvelrn HFnVtVHtranH
74 72 73 sylan φtVHtranH
75 70 74 sseldd φtVHtSs-1KCB
76 elpreima SsFnEHtSs-1KCBHtESsHtKCB
77 76 simplbda SsFnEHtSs-1KCBSsHtKCB
78 68 75 77 syl2anc φtVSsHtKCB
79 22 adantr φcmds:EE
80 4 49 syl φH:VE
81 80 adantr φcmdH:VE
82 32 simp1d φmDm-1=m
83 82 simpld φmD
84 9 1 mdvval D=V×VI
85 difss V×VIV×V
86 84 85 eqsstri DV×V
87 83 86 sstrdi φmV×V
88 87 ssbrd φcmdcV×Vd
89 88 imp φcmdcV×Vd
90 brxp cV×VdcVdV
91 89 90 sylib φcmdcVdV
92 91 simpld φcmdcV
93 81 92 ffvelcdmd φcmdHcE
94 fvco3 s:EEHcESsHc=SsHc
95 79 93 94 syl2anc φcmdSsHc=SsHc
96 95 fveq2d φcmdWSsHc=WSsHc
97 4 adantr φcmdTmFS
98 13 adantr φcmdSranL
99 79 93 ffvelcdmd φcmdsHcE
100 8 2 11 10 msubvrs TmFSSranLsHcEWSsHc=uWsHcWSHu
101 97 98 99 100 syl3anc φcmdWSsHc=uWsHcWSHu
102 96 101 eqtrd φcmdWSsHc=uWsHcWSHu
103 102 eleq2d φcmdaWSsHcauWsHcWSHu
104 eliun auWsHcWSHuuWsHcaWSHu
105 103 104 bitrdi φcmdaWSsHcuWsHcaWSHu
106 91 simprd φcmddV
107 81 106 ffvelcdmd φcmdHdE
108 fvco3 s:EEHdESsHd=SsHd
109 79 107 108 syl2anc φcmdSsHd=SsHd
110 109 fveq2d φcmdWSsHd=WSsHd
111 79 107 ffvelcdmd φcmdsHdE
112 8 2 11 10 msubvrs TmFSSranLsHdEWSsHd=vWsHdWSHv
113 97 98 111 112 syl3anc φcmdWSsHd=vWsHdWSHv
114 110 113 eqtrd φcmdWSsHd=vWsHdWSHv
115 114 eleq2d φcmdbWSsHdbvWsHdWSHv
116 eliun bvWsHdWSHvvWsHdbWSHv
117 115 116 bitrdi φcmdbWSsHdvWsHdbWSHv
118 105 117 anbi12d φcmdaWSsHcbWSsHduWsHcaWSHuvWsHdbWSHv
119 reeanv uWsHcvWsHdaWSHubWSHvuWsHcaWSHuvWsHdbWSHv
120 simpll φcmduWsHcvWsHdφ
121 brxp uWsHc×WsHdvuWsHcvWsHd
122 breq12 z=cw=dzmwcmd
123 simpl z=cw=dz=c
124 123 fveq2d z=cw=dHz=Hc
125 124 fveq2d z=cw=dsHz=sHc
126 125 fveq2d z=cw=dWsHz=WsHc
127 simpr z=cw=dw=d
128 127 fveq2d z=cw=dHw=Hd
129 128 fveq2d z=cw=dsHw=sHd
130 129 fveq2d z=cw=dWsHw=WsHd
131 126 130 xpeq12d z=cw=dWsHz×WsHw=WsHc×WsHd
132 131 sseq1d z=cw=dWsHz×WsHwMWsHc×WsHdM
133 122 132 imbi12d z=cw=dzmwWsHz×WsHwMcmdWsHc×WsHdM
134 133 spc2gv cVdVzwzmwWsHz×WsHwMcmdWsHc×WsHdM
135 134 el2v zwzmwWsHz×WsHwMcmdWsHc×WsHdM
136 20 135 syl φcmdWsHc×WsHdM
137 136 imp φcmdWsHc×WsHdM
138 137 ssbrd φcmduWsHc×WsHdvuMv
139 121 138 biimtrrid φcmduWsHcvWsHduMv
140 139 imp φcmduWsHcvWsHduMv
141 vex uV
142 vex vV
143 breq12 x=uy=vxMyuMv
144 simpl x=uy=vx=u
145 144 fveq2d x=uy=vHx=Hu
146 145 fveq2d x=uy=vSHx=SHu
147 146 fveq2d x=uy=vWSHx=WSHu
148 147 eleq2d x=uy=vaWSHxaWSHu
149 simpr x=uy=vy=v
150 149 fveq2d x=uy=vHy=Hv
151 150 fveq2d x=uy=vSHy=SHv
152 151 fveq2d x=uy=vWSHy=WSHv
153 152 eleq2d x=uy=vbWSHybWSHv
154 143 148 153 3anbi123d x=uy=vxMyaWSHxbWSHyuMvaWSHubWSHv
155 154 anbi2d x=uy=vφxMyaWSHxbWSHyφuMvaWSHubWSHv
156 155 imbi1d x=uy=vφxMyaWSHxbWSHyaKbφuMvaWSHubWSHvaKb
157 141 142 156 16 vtocl2 φuMvaWSHubWSHvaKb
158 157 3exp2 φuMvaWSHubWSHvaKb
159 158 imp4b φuMvaWSHubWSHvaKb
160 120 140 159 syl2anc φcmduWsHcvWsHdaWSHubWSHvaKb
161 160 rexlimdvva φcmduWsHcvWsHdaWSHubWSHvaKb
162 119 161 biimtrrid φcmduWsHcaWSHuvWsHdbWSHvaKb
163 118 162 sylbid φcmdaWSsHcbWSsHdaKb
164 163 exp4b φcmdaWSsHcbWSsHdaKb
165 164 3imp2 φcmdaWSsHcbWSsHdaKb
166 1 2 3 4 5 6 23 8 9 10 11 17 38 67 78 165 mclsax φSspKCB
167 36 166 eqeltrrd φSspKCB
168 40 ffnd φSFnE
169 elpreima SFnEspS-1KCBspESspKCB
170 168 169 syl φspS-1KCBspESspKCB
171 34 167 170 mpbir2and φspS-1KCB