Metamath Proof Explorer


Theorem mdetrsca

Description: The determinant function is homogeneous for each row: If the matrices X and Z are identical except for the I -th row, and the I -th row of the matrix X is the componentwise product of the I -th row of the matrix Z and the scalar Y , then the determinant of X is the determinant of Z multiplied by Y . (Contributed by SO, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetrsca.d D=NmaDetR
mdetrsca.a A=NMatR
mdetrsca.b B=BaseA
mdetrsca.k K=BaseR
mdetrsca.t ·˙=R
mdetrsca.r φRCRing
mdetrsca.x φXB
mdetrsca.y φYK
mdetrsca.z φZB
mdetrsca.i φIN
mdetrsca.eq φXI×N=I×N×Y·˙fZI×N
mdetrsca.ne φXNI×N=ZNI×N
Assertion mdetrsca φDX=Y·˙DZ

Proof

Step Hyp Ref Expression
1 mdetrsca.d D=NmaDetR
2 mdetrsca.a A=NMatR
3 mdetrsca.b B=BaseA
4 mdetrsca.k K=BaseR
5 mdetrsca.t ·˙=R
6 mdetrsca.r φRCRing
7 mdetrsca.x φXB
8 mdetrsca.y φYK
9 mdetrsca.z φZB
10 mdetrsca.i φIN
11 mdetrsca.eq φXI×N=I×N×Y·˙fZI×N
12 mdetrsca.ne φXNI×N=ZNI×N
13 11 oveqd φIXI×NpI=II×N×Y·˙fZI×NpI
14 13 adantr φpBaseSymGrpNIXI×NpI=II×N×Y·˙fZI×NpI
15 10 adantr φpBaseSymGrpNIN
16 snidg INII
17 15 16 syl φpBaseSymGrpNII
18 eqid SymGrpN=SymGrpN
19 eqid BaseSymGrpN=BaseSymGrpN
20 18 19 symgbasf1o pBaseSymGrpNp:N1-1 ontoN
21 20 adantl φpBaseSymGrpNp:N1-1 ontoN
22 f1of p:N1-1 ontoNp:NN
23 21 22 syl φpBaseSymGrpNp:NN
24 23 15 ffvelcdmd φpBaseSymGrpNpIN
25 ovres IIpINIXI×NpI=IXpI
26 17 24 25 syl2anc φpBaseSymGrpNIXI×NpI=IXpI
27 17 24 opelxpd φpBaseSymGrpNIpII×N
28 snfi IFin
29 2 3 matrcl XBNFinRV
30 7 29 syl φNFinRV
31 30 simpld φNFin
32 31 adantr φpBaseSymGrpNNFin
33 xpfi IFinNFinI×NFin
34 28 32 33 sylancr φpBaseSymGrpNI×NFin
35 8 adantr φpBaseSymGrpNYK
36 2 4 3 matbas2i ZBZKN×N
37 elmapi ZKN×NZ:N×NK
38 9 36 37 3syl φZ:N×NK
39 38 adantr φpBaseSymGrpNZ:N×NK
40 39 ffnd φpBaseSymGrpNZFnN×N
41 15 snssd φpBaseSymGrpNIN
42 xpss1 INI×NN×N
43 41 42 syl φpBaseSymGrpNI×NN×N
44 40 43 fnssresd φpBaseSymGrpNZI×NFnI×N
45 eqidd φpBaseSymGrpNIpII×NZI×NIpI=ZI×NIpI
46 34 35 44 45 ofc1 φpBaseSymGrpNIpII×NI×N×Y·˙fZI×NIpI=Y·˙ZI×NIpI
47 27 46 mpdan φpBaseSymGrpNI×N×Y·˙fZI×NIpI=Y·˙ZI×NIpI
48 df-ov II×N×Y·˙fZI×NpI=I×N×Y·˙fZI×NIpI
49 df-ov IZI×NpI=ZI×NIpI
50 49 oveq2i Y·˙IZI×NpI=Y·˙ZI×NIpI
51 47 48 50 3eqtr4g φpBaseSymGrpNII×N×Y·˙fZI×NpI=Y·˙IZI×NpI
52 14 26 51 3eqtr3d φpBaseSymGrpNIXpI=Y·˙IZI×NpI
53 ovres IIpINIZI×NpI=IZpI
54 17 24 53 syl2anc φpBaseSymGrpNIZI×NpI=IZpI
55 54 oveq2d φpBaseSymGrpNY·˙IZI×NpI=Y·˙IZpI
56 52 55 eqtrd φpBaseSymGrpNIXpI=Y·˙IZpI
57 56 oveq1d φpBaseSymGrpNIXpI·˙mulGrpRrNIrZpr=Y·˙IZpI·˙mulGrpRrNIrZpr
58 6 crngringd φRRing
59 58 adantr φpBaseSymGrpNRRing
60 39 15 24 fovcdmd φpBaseSymGrpNIZpIK
61 eqid mulGrpR=mulGrpR
62 61 4 mgpbas K=BasemulGrpR
63 61 crngmgp RCRingmulGrpRCMnd
64 6 63 syl φmulGrpRCMnd
65 64 adantr φpBaseSymGrpNmulGrpRCMnd
66 difssd φpBaseSymGrpNNIN
67 32 66 ssfid φpBaseSymGrpNNIFin
68 eldifi rNIrN
69 38 ad2antrr φpBaseSymGrpNrNZ:N×NK
70 simpr φpBaseSymGrpNrNrN
71 23 ffvelcdmda φpBaseSymGrpNrNprN
72 69 70 71 fovcdmd φpBaseSymGrpNrNrZprK
73 68 72 sylan2 φpBaseSymGrpNrNIrZprK
74 73 ralrimiva φpBaseSymGrpNrNIrZprK
75 62 65 67 74 gsummptcl φpBaseSymGrpNmulGrpRrNIrZprK
76 4 5 ringass RRingYKIZpIKmulGrpRrNIrZprKY·˙IZpI·˙mulGrpRrNIrZpr=Y·˙IZpI·˙mulGrpRrNIrZpr
77 59 35 60 75 76 syl13anc φpBaseSymGrpNY·˙IZpI·˙mulGrpRrNIrZpr=Y·˙IZpI·˙mulGrpRrNIrZpr
78 57 77 eqtrd φpBaseSymGrpNIXpI·˙mulGrpRrNIrZpr=Y·˙IZpI·˙mulGrpRrNIrZpr
79 61 5 mgpplusg ·˙=+mulGrpR
80 2 4 3 matbas2i XBXKN×N
81 elmapi XKN×NX:N×NK
82 7 80 81 3syl φX:N×NK
83 82 ad2antrr φpBaseSymGrpNrNX:N×NK
84 83 70 71 fovcdmd φpBaseSymGrpNrNrXprK
85 disjdif INI=
86 85 a1i φpBaseSymGrpNINI=
87 undif ININI=N
88 41 87 sylib φpBaseSymGrpNINI=N
89 88 eqcomd φpBaseSymGrpNN=INI
90 62 79 65 32 84 86 89 gsummptfidmsplit φpBaseSymGrpNmulGrpRrNrXpr=mulGrpRrIrXpr·˙mulGrpRrNIrXpr
91 65 cmnmndd φpBaseSymGrpNmulGrpRMnd
92 82 adantr φpBaseSymGrpNX:N×NK
93 92 15 24 fovcdmd φpBaseSymGrpNIXpIK
94 id r=Ir=I
95 fveq2 r=Ipr=pI
96 94 95 oveq12d r=IrXpr=IXpI
97 62 96 gsumsn mulGrpRMndINIXpIKmulGrpRrIrXpr=IXpI
98 91 15 93 97 syl3anc φpBaseSymGrpNmulGrpRrIrXpr=IXpI
99 12 oveqd φrXNI×Npr=rZNI×Npr
100 99 ad2antrr φpBaseSymGrpNrNIrXNI×Npr=rZNI×Npr
101 simpr φpBaseSymGrpNrNIrNI
102 68 71 sylan2 φpBaseSymGrpNrNIprN
103 ovres rNIprNrXNI×Npr=rXpr
104 101 102 103 syl2anc φpBaseSymGrpNrNIrXNI×Npr=rXpr
105 ovres rNIprNrZNI×Npr=rZpr
106 101 102 105 syl2anc φpBaseSymGrpNrNIrZNI×Npr=rZpr
107 100 104 106 3eqtr3d φpBaseSymGrpNrNIrXpr=rZpr
108 107 mpteq2dva φpBaseSymGrpNrNIrXpr=rNIrZpr
109 108 oveq2d φpBaseSymGrpNmulGrpRrNIrXpr=mulGrpRrNIrZpr
110 98 109 oveq12d φpBaseSymGrpNmulGrpRrIrXpr·˙mulGrpRrNIrXpr=IXpI·˙mulGrpRrNIrZpr
111 90 110 eqtrd φpBaseSymGrpNmulGrpRrNrXpr=IXpI·˙mulGrpRrNIrZpr
112 62 79 65 32 72 86 89 gsummptfidmsplit φpBaseSymGrpNmulGrpRrNrZpr=mulGrpRrIrZpr·˙mulGrpRrNIrZpr
113 94 95 oveq12d r=IrZpr=IZpI
114 62 113 gsumsn mulGrpRMndINIZpIKmulGrpRrIrZpr=IZpI
115 91 15 60 114 syl3anc φpBaseSymGrpNmulGrpRrIrZpr=IZpI
116 115 oveq1d φpBaseSymGrpNmulGrpRrIrZpr·˙mulGrpRrNIrZpr=IZpI·˙mulGrpRrNIrZpr
117 112 116 eqtrd φpBaseSymGrpNmulGrpRrNrZpr=IZpI·˙mulGrpRrNIrZpr
118 117 oveq2d φpBaseSymGrpNY·˙mulGrpRrNrZpr=Y·˙IZpI·˙mulGrpRrNIrZpr
119 78 111 118 3eqtr4d φpBaseSymGrpNmulGrpRrNrXpr=Y·˙mulGrpRrNrZpr
120 119 oveq2d φpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr=ℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr
121 6 adantr φpBaseSymGrpNRCRing
122 zrhpsgnmhm RRingNFinℤRHomRpmSgnNSymGrpNMndHommulGrpR
123 58 31 122 syl2anc φℤRHomRpmSgnNSymGrpNMndHommulGrpR
124 19 62 mhmf ℤRHomRpmSgnNSymGrpNMndHommulGrpRℤRHomRpmSgnN:BaseSymGrpNK
125 123 124 syl φℤRHomRpmSgnN:BaseSymGrpNK
126 125 ffvelcdmda φpBaseSymGrpNℤRHomRpmSgnNpK
127 4 5 crngcom RCRingℤRHomRpmSgnNpKYKℤRHomRpmSgnNp·˙Y=Y·˙ℤRHomRpmSgnNp
128 121 126 35 127 syl3anc φpBaseSymGrpNℤRHomRpmSgnNp·˙Y=Y·˙ℤRHomRpmSgnNp
129 128 oveq1d φpBaseSymGrpNℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr=Y·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
130 72 ralrimiva φpBaseSymGrpNrNrZprK
131 62 65 32 130 gsummptcl φpBaseSymGrpNmulGrpRrNrZprK
132 4 5 ringass RRingℤRHomRpmSgnNpKYKmulGrpRrNrZprKℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr=ℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr
133 59 126 35 131 132 syl13anc φpBaseSymGrpNℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr=ℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr
134 4 5 ringass RRingYKℤRHomRpmSgnNpKmulGrpRrNrZprKY·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr=Y·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
135 59 35 126 131 134 syl13anc φpBaseSymGrpNY·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr=Y·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
136 129 133 135 3eqtr3d φpBaseSymGrpNℤRHomRpmSgnNp·˙Y·˙mulGrpRrNrZpr=Y·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
137 120 136 eqtrd φpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr=Y·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
138 137 mpteq2dva φpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr=pBaseSymGrpNY·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
139 138 oveq2d φRpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr=RpBaseSymGrpNY·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr
140 eqid 0R=0R
141 18 19 symgbasfi NFinBaseSymGrpNFin
142 31 141 syl φBaseSymGrpNFin
143 4 5 59 126 131 ringcld φpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZprK
144 eqid pBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr=pBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
145 ovexd φpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZprV
146 fvexd φ0RV
147 144 142 145 146 fsuppmptdm φfinSupp0RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
148 4 140 5 58 142 8 143 147 gsummulc2 φRpBaseSymGrpNY·˙ℤRHomRpmSgnNp·˙mulGrpRrNrZpr=Y·˙RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
149 139 148 eqtrd φRpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr=Y·˙RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
150 eqid ℤRHomR=ℤRHomR
151 eqid pmSgnN=pmSgnN
152 1 2 3 19 150 151 5 61 mdetleib2 RCRingXBDX=RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr
153 6 7 152 syl2anc φDX=RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrXpr
154 1 2 3 19 150 151 5 61 mdetleib2 RCRingZBDZ=RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
155 6 9 154 syl2anc φDZ=RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
156 155 oveq2d φY·˙DZ=Y·˙RpBaseSymGrpNℤRHomRpmSgnNp·˙mulGrpRrNrZpr
157 149 153 156 3eqtr4d φDX=Y·˙DZ