Description: The determinant function is homogeneous for each row: If the matrices X and Z are identical except for the I -th row, and the I -th row of the matrix X is the componentwise product of the I -th row of the matrix Z and the scalar Y , then the determinant of X is the determinant of Z multiplied by Y . (Contributed by SO, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdetrsca.d | |
|
mdetrsca.a | |
||
mdetrsca.b | |
||
mdetrsca.k | |
||
mdetrsca.t | |
||
mdetrsca.r | |
||
mdetrsca.x | |
||
mdetrsca.y | |
||
mdetrsca.z | |
||
mdetrsca.i | |
||
mdetrsca.eq | |
||
mdetrsca.ne | |
||
Assertion | mdetrsca | |