| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
elfznn |
|
| 3 |
2
|
adantl |
|
| 4 |
|
mucl |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
zred |
|
| 7 |
6 3
|
nndivred |
|
| 8 |
7
|
recnd |
|
| 9 |
1 8
|
fsumcl |
|
| 10 |
9
|
adantl |
|
| 11 |
|
emre |
|
| 12 |
11
|
recni |
|
| 13 |
12
|
a1i |
|
| 14 |
|
mudivsum |
|
| 15 |
14
|
a1i |
|
| 16 |
|
rpssre |
|
| 17 |
|
o1const |
|
| 18 |
16 12 17
|
mp2an |
|
| 19 |
18
|
a1i |
|
| 20 |
10 13 15 19
|
o1mul2 |
|
| 21 |
|
fzfid |
|
| 22 |
|
elfznn |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
nnrecred |
|
| 25 |
21 24
|
fsumrecl |
|
| 26 |
2
|
nnrpd |
|
| 27 |
|
rpdivcl |
|
| 28 |
26 27
|
sylan2 |
|
| 29 |
28
|
relogcld |
|
| 30 |
25 29
|
resubcld |
|
| 31 |
7 30
|
remulcld |
|
| 32 |
1 31
|
fsumrecl |
|
| 33 |
32
|
recnd |
|
| 34 |
33
|
adantl |
|
| 35 |
|
mulcl |
|
| 36 |
9 12 35
|
sylancl |
|
| 37 |
36
|
adantl |
|
| 38 |
|
nnrecre |
|
| 39 |
38
|
recnd |
|
| 40 |
23 39
|
syl |
|
| 41 |
21 40
|
fsumcl |
|
| 42 |
29
|
recnd |
|
| 43 |
41 42
|
subcld |
|
| 44 |
8 43
|
mulcld |
|
| 45 |
|
mulcl |
|
| 46 |
8 12 45
|
sylancl |
|
| 47 |
1 44 46
|
fsumsub |
|
| 48 |
12
|
a1i |
|
| 49 |
41 42 48
|
subsub4d |
|
| 50 |
49
|
oveq2d |
|
| 51 |
8 43 48
|
subdid |
|
| 52 |
50 51
|
eqtr3d |
|
| 53 |
52
|
sumeq2dv |
|
| 54 |
12
|
a1i |
|
| 55 |
1 54 8
|
fsummulc1 |
|
| 56 |
55
|
oveq2d |
|
| 57 |
47 53 56
|
3eqtr4d |
|
| 58 |
57
|
mpteq2ia |
|
| 59 |
16
|
a1i |
|
| 60 |
42 48
|
addcld |
|
| 61 |
41 60
|
subcld |
|
| 62 |
8 61
|
mulcld |
|
| 63 |
1 62
|
fsumcl |
|
| 64 |
63
|
adantl |
|
| 65 |
|
1red |
|
| 66 |
63
|
abscld |
|
| 67 |
62
|
abscld |
|
| 68 |
1 67
|
fsumrecl |
|
| 69 |
|
1red |
|
| 70 |
1 62
|
fsumabs |
|
| 71 |
|
rprege0 |
|
| 72 |
|
flge0nn0 |
|
| 73 |
71 72
|
syl |
|
| 74 |
73
|
nn0red |
|
| 75 |
|
rerpdivcl |
|
| 76 |
74 75
|
mpancom |
|
| 77 |
|
rpreccl |
|
| 78 |
77
|
adantr |
|
| 79 |
78
|
rpred |
|
| 80 |
8
|
abscld |
|
| 81 |
3
|
nnrecred |
|
| 82 |
61
|
abscld |
|
| 83 |
|
id |
|
| 84 |
|
rpdivcl |
|
| 85 |
26 83 84
|
syl2anr |
|
| 86 |
85
|
rpred |
|
| 87 |
8
|
absge0d |
|
| 88 |
61
|
absge0d |
|
| 89 |
6
|
recnd |
|
| 90 |
3
|
nncnd |
|
| 91 |
3
|
nnne0d |
|
| 92 |
89 90 91
|
absdivd |
|
| 93 |
3
|
nnrpd |
|
| 94 |
|
rprege0 |
|
| 95 |
93 94
|
syl |
|
| 96 |
|
absid |
|
| 97 |
95 96
|
syl |
|
| 98 |
97
|
oveq2d |
|
| 99 |
92 98
|
eqtrd |
|
| 100 |
89
|
abscld |
|
| 101 |
|
1red |
|
| 102 |
|
mule1 |
|
| 103 |
3 102
|
syl |
|
| 104 |
100 101 93 103
|
lediv1dd |
|
| 105 |
99 104
|
eqbrtrd |
|
| 106 |
|
harmonicbnd4 |
|
| 107 |
28 106
|
syl |
|
| 108 |
|
rpcnne0 |
|
| 109 |
108
|
adantr |
|
| 110 |
|
rpcnne0 |
|
| 111 |
93 110
|
syl |
|
| 112 |
|
recdiv |
|
| 113 |
109 111 112
|
syl2anc |
|
| 114 |
107 113
|
breqtrd |
|
| 115 |
80 81 82 86 87 88 105 114
|
lemul12ad |
|
| 116 |
8 61
|
absmuld |
|
| 117 |
|
1cnd |
|
| 118 |
|
dmdcan |
|
| 119 |
111 109 117 118
|
syl3anc |
|
| 120 |
85
|
rpcnd |
|
| 121 |
81
|
recnd |
|
| 122 |
120 121
|
mulcomd |
|
| 123 |
119 122
|
eqtr3d |
|
| 124 |
115 116 123
|
3brtr4d |
|
| 125 |
1 67 79 124
|
fsumle |
|
| 126 |
|
hashfz1 |
|
| 127 |
73 126
|
syl |
|
| 128 |
127
|
oveq1d |
|
| 129 |
77
|
rpcnd |
|
| 130 |
|
fsumconst |
|
| 131 |
1 129 130
|
syl2anc |
|
| 132 |
73
|
nn0cnd |
|
| 133 |
|
rpcn |
|
| 134 |
|
rpne0 |
|
| 135 |
132 133 134
|
divrecd |
|
| 136 |
128 131 135
|
3eqtr4d |
|
| 137 |
125 136
|
breqtrd |
|
| 138 |
|
rpre |
|
| 139 |
|
flle |
|
| 140 |
138 139
|
syl |
|
| 141 |
133
|
mulridd |
|
| 142 |
140 141
|
breqtrrd |
|
| 143 |
|
reflcl |
|
| 144 |
138 143
|
syl |
|
| 145 |
|
rpregt0 |
|
| 146 |
|
ledivmul |
|
| 147 |
144 69 145 146
|
syl3anc |
|
| 148 |
142 147
|
mpbird |
|
| 149 |
68 76 69 137 148
|
letrd |
|
| 150 |
66 68 69 70 149
|
letrd |
|
| 151 |
150
|
ad2antrl |
|
| 152 |
59 64 65 65 151
|
elo1d |
|
| 153 |
58 152
|
eqeltrrid |
|
| 154 |
34 37 153
|
o1dif |
|
| 155 |
20 154
|
mpbird |
|
| 156 |
155
|
mptru |
|