Metamath Proof Explorer


Theorem mulogsumlem

Description: Lemma for mulogsum . (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mulogsumlem x+n=1xμnnm=1xn1mlogxn𝑂1

Proof

Step Hyp Ref Expression
1 fzfid x+1xFin
2 elfznn n1xn
3 2 adantl x+n1xn
4 mucl nμn
5 3 4 syl x+n1xμn
6 5 zred x+n1xμn
7 6 3 nndivred x+n1xμnn
8 7 recnd x+n1xμnn
9 1 8 fsumcl x+n=1xμnn
10 9 adantl x+n=1xμnn
11 emre γ
12 11 recni γ
13 12 a1i x+γ
14 mudivsum x+n=1xμnn𝑂1
15 14 a1i x+n=1xμnn𝑂1
16 rpssre +
17 o1const +γx+γ𝑂1
18 16 12 17 mp2an x+γ𝑂1
19 18 a1i x+γ𝑂1
20 10 13 15 19 o1mul2 x+n=1xμnnγ𝑂1
21 fzfid x+n1x1xnFin
22 elfznn m1xnm
23 22 adantl x+n1xm1xnm
24 23 nnrecred x+n1xm1xn1m
25 21 24 fsumrecl x+n1xm=1xn1m
26 2 nnrpd n1xn+
27 rpdivcl x+n+xn+
28 26 27 sylan2 x+n1xxn+
29 28 relogcld x+n1xlogxn
30 25 29 resubcld x+n1xm=1xn1mlogxn
31 7 30 remulcld x+n1xμnnm=1xn1mlogxn
32 1 31 fsumrecl x+n=1xμnnm=1xn1mlogxn
33 32 recnd x+n=1xμnnm=1xn1mlogxn
34 33 adantl x+n=1xμnnm=1xn1mlogxn
35 mulcl n=1xμnnγn=1xμnnγ
36 9 12 35 sylancl x+n=1xμnnγ
37 36 adantl x+n=1xμnnγ
38 nnrecre m1m
39 38 recnd m1m
40 23 39 syl x+n1xm1xn1m
41 21 40 fsumcl x+n1xm=1xn1m
42 29 recnd x+n1xlogxn
43 41 42 subcld x+n1xm=1xn1mlogxn
44 8 43 mulcld x+n1xμnnm=1xn1mlogxn
45 mulcl μnnγμnnγ
46 8 12 45 sylancl x+n1xμnnγ
47 1 44 46 fsumsub x+n=1xμnnm=1xn1mlogxnμnnγ=n=1xμnnm=1xn1mlogxnn=1xμnnγ
48 12 a1i x+n1xγ
49 41 42 48 subsub4d x+n1xm=1xn1m-logxn-γ=m=1xn1mlogxn+γ
50 49 oveq2d x+n1xμnnm=1xn1m-logxn-γ=μnnm=1xn1mlogxn+γ
51 8 43 48 subdid x+n1xμnnm=1xn1m-logxn-γ=μnnm=1xn1mlogxnμnnγ
52 50 51 eqtr3d x+n1xμnnm=1xn1mlogxn+γ=μnnm=1xn1mlogxnμnnγ
53 52 sumeq2dv x+n=1xμnnm=1xn1mlogxn+γ=n=1xμnnm=1xn1mlogxnμnnγ
54 12 a1i x+γ
55 1 54 8 fsummulc1 x+n=1xμnnγ=n=1xμnnγ
56 55 oveq2d x+n=1xμnnm=1xn1mlogxnn=1xμnnγ=n=1xμnnm=1xn1mlogxnn=1xμnnγ
57 47 53 56 3eqtr4d x+n=1xμnnm=1xn1mlogxn+γ=n=1xμnnm=1xn1mlogxnn=1xμnnγ
58 57 mpteq2ia x+n=1xμnnm=1xn1mlogxn+γ=x+n=1xμnnm=1xn1mlogxnn=1xμnnγ
59 16 a1i +
60 42 48 addcld x+n1xlogxn+γ
61 41 60 subcld x+n1xm=1xn1mlogxn+γ
62 8 61 mulcld x+n1xμnnm=1xn1mlogxn+γ
63 1 62 fsumcl x+n=1xμnnm=1xn1mlogxn+γ
64 63 adantl x+n=1xμnnm=1xn1mlogxn+γ
65 1red 1
66 63 abscld x+n=1xμnnm=1xn1mlogxn+γ
67 62 abscld x+n1xμnnm=1xn1mlogxn+γ
68 1 67 fsumrecl x+n=1xμnnm=1xn1mlogxn+γ
69 1red x+1
70 1 62 fsumabs x+n=1xμnnm=1xn1mlogxn+γn=1xμnnm=1xn1mlogxn+γ
71 rprege0 x+x0x
72 flge0nn0 x0xx0
73 71 72 syl x+x0
74 73 nn0red x+x
75 rerpdivcl xx+xx
76 74 75 mpancom x+xx
77 rpreccl x+1x+
78 77 adantr x+n1x1x+
79 78 rpred x+n1x1x
80 8 abscld x+n1xμnn
81 3 nnrecred x+n1x1n
82 61 abscld x+n1xm=1xn1mlogxn+γ
83 id x+x+
84 rpdivcl n+x+nx+
85 26 83 84 syl2anr x+n1xnx+
86 85 rpred x+n1xnx
87 8 absge0d x+n1x0μnn
88 61 absge0d x+n1x0m=1xn1mlogxn+γ
89 6 recnd x+n1xμn
90 3 nncnd x+n1xn
91 3 nnne0d x+n1xn0
92 89 90 91 absdivd x+n1xμnn=μnn
93 3 nnrpd x+n1xn+
94 rprege0 n+n0n
95 93 94 syl x+n1xn0n
96 absid n0nn=n
97 95 96 syl x+n1xn=n
98 97 oveq2d x+n1xμnn=μnn
99 92 98 eqtrd x+n1xμnn=μnn
100 89 abscld x+n1xμn
101 1red x+n1x1
102 mule1 nμn1
103 3 102 syl x+n1xμn1
104 100 101 93 103 lediv1dd x+n1xμnn1n
105 99 104 eqbrtrd x+n1xμnn1n
106 harmonicbnd4 xn+m=1xn1mlogxn+γ1xn
107 28 106 syl x+n1xm=1xn1mlogxn+γ1xn
108 rpcnne0 x+xx0
109 108 adantr x+n1xxx0
110 rpcnne0 n+nn0
111 93 110 syl x+n1xnn0
112 recdiv xx0nn01xn=nx
113 109 111 112 syl2anc x+n1x1xn=nx
114 107 113 breqtrd x+n1xm=1xn1mlogxn+γnx
115 80 81 82 86 87 88 105 114 lemul12ad x+n1xμnnm=1xn1mlogxn+γ1nnx
116 8 61 absmuld x+n1xμnnm=1xn1mlogxn+γ=μnnm=1xn1mlogxn+γ
117 1cnd x+n1x1
118 dmdcan nn0xx01nx1n=1x
119 111 109 117 118 syl3anc x+n1xnx1n=1x
120 85 rpcnd x+n1xnx
121 81 recnd x+n1x1n
122 120 121 mulcomd x+n1xnx1n=1nnx
123 119 122 eqtr3d x+n1x1x=1nnx
124 115 116 123 3brtr4d x+n1xμnnm=1xn1mlogxn+γ1x
125 1 67 79 124 fsumle x+n=1xμnnm=1xn1mlogxn+γn=1x1x
126 hashfz1 x01x=x
127 73 126 syl x+1x=x
128 127 oveq1d x+1x1x=x1x
129 77 rpcnd x+1x
130 fsumconst 1xFin1xn=1x1x=1x1x
131 1 129 130 syl2anc x+n=1x1x=1x1x
132 73 nn0cnd x+x
133 rpcn x+x
134 rpne0 x+x0
135 132 133 134 divrecd x+xx=x1x
136 128 131 135 3eqtr4d x+n=1x1x=xx
137 125 136 breqtrd x+n=1xμnnm=1xn1mlogxn+γxx
138 rpre x+x
139 flle xxx
140 138 139 syl x+xx
141 133 mulridd x+x1=x
142 140 141 breqtrrd x+xx1
143 reflcl xx
144 138 143 syl x+x
145 rpregt0 x+x0<x
146 ledivmul x1x0<xxx1xx1
147 144 69 145 146 syl3anc x+xx1xx1
148 142 147 mpbird x+xx1
149 68 76 69 137 148 letrd x+n=1xμnnm=1xn1mlogxn+γ1
150 66 68 69 70 149 letrd x+n=1xμnnm=1xn1mlogxn+γ1
151 150 ad2antrl x+1xn=1xμnnm=1xn1mlogxn+γ1
152 59 64 65 65 151 elo1d x+n=1xμnnm=1xn1mlogxn+γ𝑂1
153 58 152 eqeltrrid x+n=1xμnnm=1xn1mlogxnn=1xμnnγ𝑂1
154 34 37 153 o1dif x+n=1xμnnm=1xn1mlogxn𝑂1x+n=1xμnnγ𝑂1
155 20 154 mpbird x+n=1xμnnm=1xn1mlogxn𝑂1
156 155 mptru x+n=1xμnnm=1xn1mlogxn𝑂1