Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
mulogsumlem
Next ⟩
mulogsum
Metamath Proof Explorer
Ascii
Unicode
Theorem
mulogsumlem
Description:
Lemma for
mulogsum
.
(Contributed by
Mario Carneiro
, 14-May-2016)
Ref
Expression
Assertion
mulogsumlem
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
fzfid
⊢
x
∈
ℝ
+
→
1
…
x
∈
Fin
2
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
3
2
adantl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℕ
4
mucl
⊢
n
∈
ℕ
→
μ
n
∈
ℤ
5
3
4
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℤ
6
5
zred
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
7
6
3
nndivred
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℝ
8
7
recnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℂ
9
1
8
fsumcl
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∈
ℂ
10
9
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∈
ℂ
11
emre
⊢
γ
∈
ℝ
12
11
recni
⊢
γ
∈
ℂ
13
12
a1i
⊢
⊤
∧
x
∈
ℝ
+
→
γ
∈
ℂ
14
mudivsum
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∈
𝑂
1
15
14
a1i
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∈
𝑂
1
16
rpssre
⊢
ℝ
+
⊆
ℝ
17
o1const
⊢
ℝ
+
⊆
ℝ
∧
γ
∈
ℂ
→
x
∈
ℝ
+
⟼
γ
∈
𝑂
1
18
16
12
17
mp2an
⊢
x
∈
ℝ
+
⟼
γ
∈
𝑂
1
19
18
a1i
⊢
⊤
→
x
∈
ℝ
+
⟼
γ
∈
𝑂
1
20
10
13
15
19
o1mul2
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
γ
∈
𝑂
1
21
fzfid
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
…
x
n
∈
Fin
22
elfznn
⊢
m
∈
1
…
x
n
→
m
∈
ℕ
23
22
adantl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
m
∈
ℕ
24
23
nnrecred
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
m
∈
ℝ
25
21
24
fsumrecl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
∈
ℝ
26
2
nnrpd
⊢
n
∈
1
…
x
→
n
∈
ℝ
+
27
rpdivcl
⊢
x
∈
ℝ
+
∧
n
∈
ℝ
+
→
x
n
∈
ℝ
+
28
26
27
sylan2
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
29
28
relogcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℝ
30
25
29
resubcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℝ
31
7
30
remulcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℝ
32
1
31
fsumrecl
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℝ
33
32
recnd
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℂ
34
33
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℂ
35
mulcl
⊢
∑
n
=
1
x
μ
n
n
∈
ℂ
∧
γ
∈
ℂ
→
∑
n
=
1
x
μ
n
n
γ
∈
ℂ
36
9
12
35
sylancl
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
γ
∈
ℂ
37
36
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
γ
∈
ℂ
38
nnrecre
⊢
m
∈
ℕ
→
1
m
∈
ℝ
39
38
recnd
⊢
m
∈
ℕ
→
1
m
∈
ℂ
40
23
39
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
∧
m
∈
1
…
x
n
→
1
m
∈
ℂ
41
21
40
fsumcl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
∈
ℂ
42
29
recnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
∈
ℂ
43
41
42
subcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℂ
44
8
43
mulcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
ℂ
45
mulcl
⊢
μ
n
n
∈
ℂ
∧
γ
∈
ℂ
→
μ
n
n
γ
∈
ℂ
46
8
12
45
sylancl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
γ
∈
ℂ
47
1
44
46
fsumsub
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
μ
n
n
γ
=
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
∑
n
=
1
x
μ
n
n
γ
48
12
a1i
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
γ
∈
ℂ
49
41
42
48
subsub4d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
-
log
x
n
-
γ
=
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
50
49
oveq2d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
-
log
x
n
-
γ
=
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
51
8
43
48
subdid
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
-
log
x
n
-
γ
=
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
μ
n
n
γ
52
50
51
eqtr3d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
=
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
μ
n
n
γ
53
52
sumeq2dv
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
=
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
μ
n
n
γ
54
12
a1i
⊢
x
∈
ℝ
+
→
γ
∈
ℂ
55
1
54
8
fsummulc1
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
γ
=
∑
n
=
1
x
μ
n
n
γ
56
55
oveq2d
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
∑
n
=
1
x
μ
n
n
γ
=
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
∑
n
=
1
x
μ
n
n
γ
57
47
53
56
3eqtr4d
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
=
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
∑
n
=
1
x
μ
n
n
γ
58
57
mpteq2ia
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
=
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
∑
n
=
1
x
μ
n
n
γ
59
16
a1i
⊢
⊤
→
ℝ
+
⊆
ℝ
60
42
48
addcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
log
x
n
+
γ
∈
ℂ
61
41
60
subcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℂ
62
8
61
mulcld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℂ
63
1
62
fsumcl
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℂ
64
63
adantl
⊢
⊤
∧
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℂ
65
1red
⊢
⊤
→
1
∈
ℝ
66
63
abscld
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℝ
67
62
abscld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℝ
68
1
67
fsumrecl
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℝ
69
1red
⊢
x
∈
ℝ
+
→
1
∈
ℝ
70
1
62
fsumabs
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
71
rprege0
⊢
x
∈
ℝ
+
→
x
∈
ℝ
∧
0
≤
x
72
flge0nn0
⊢
x
∈
ℝ
∧
0
≤
x
→
x
∈
ℕ
0
73
71
72
syl
⊢
x
∈
ℝ
+
→
x
∈
ℕ
0
74
73
nn0red
⊢
x
∈
ℝ
+
→
x
∈
ℝ
75
rerpdivcl
⊢
x
∈
ℝ
∧
x
∈
ℝ
+
→
x
x
∈
ℝ
76
74
75
mpancom
⊢
x
∈
ℝ
+
→
x
x
∈
ℝ
77
rpreccl
⊢
x
∈
ℝ
+
→
1
x
∈
ℝ
+
78
77
adantr
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
x
∈
ℝ
+
79
78
rpred
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
x
∈
ℝ
80
8
abscld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∈
ℝ
81
3
nnrecred
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
∈
ℝ
82
61
abscld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
ℝ
83
id
⊢
x
∈
ℝ
+
→
x
∈
ℝ
+
84
rpdivcl
⊢
n
∈
ℝ
+
∧
x
∈
ℝ
+
→
n
x
∈
ℝ
+
85
26
83
84
syl2anr
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
x
∈
ℝ
+
86
85
rpred
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
x
∈
ℝ
87
8
absge0d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
μ
n
n
88
61
absge0d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
0
≤
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
89
6
recnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℂ
90
3
nncnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℂ
91
3
nnne0d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
≠
0
92
89
90
91
absdivd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
=
μ
n
n
93
3
nnrpd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℝ
+
94
rprege0
⊢
n
∈
ℝ
+
→
n
∈
ℝ
∧
0
≤
n
95
93
94
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℝ
∧
0
≤
n
96
absid
⊢
n
∈
ℝ
∧
0
≤
n
→
n
=
n
97
95
96
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
=
n
98
97
oveq2d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
=
μ
n
n
99
92
98
eqtrd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
=
μ
n
n
100
89
abscld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
∈
ℝ
101
1red
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
∈
ℝ
102
mule1
⊢
n
∈
ℕ
→
μ
n
≤
1
103
3
102
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
≤
1
104
100
101
93
103
lediv1dd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
≤
1
n
105
99
104
eqbrtrd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
≤
1
n
106
harmonicbnd4
⊢
x
n
∈
ℝ
+
→
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
x
n
107
28
106
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
x
n
108
rpcnne0
⊢
x
∈
ℝ
+
→
x
∈
ℂ
∧
x
≠
0
109
108
adantr
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
x
∈
ℂ
∧
x
≠
0
110
rpcnne0
⊢
n
∈
ℝ
+
→
n
∈
ℂ
∧
n
≠
0
111
93
110
syl
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
∈
ℂ
∧
n
≠
0
112
recdiv
⊢
x
∈
ℂ
∧
x
≠
0
∧
n
∈
ℂ
∧
n
≠
0
→
1
x
n
=
n
x
113
109
111
112
syl2anc
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
x
n
=
n
x
114
107
113
breqtrd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
n
x
115
80
81
82
86
87
88
105
114
lemul12ad
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
n
n
x
116
8
61
absmuld
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
=
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
117
1cnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
∈
ℂ
118
dmdcan
⊢
n
∈
ℂ
∧
n
≠
0
∧
x
∈
ℂ
∧
x
≠
0
∧
1
∈
ℂ
→
n
x
1
n
=
1
x
119
111
109
117
118
syl3anc
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
x
1
n
=
1
x
120
85
rpcnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
x
∈
ℂ
121
81
recnd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
n
∈
ℂ
122
120
121
mulcomd
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
n
x
1
n
=
1
n
n
x
123
119
122
eqtr3d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
1
x
=
1
n
n
x
124
115
116
123
3brtr4d
⊢
x
∈
ℝ
+
∧
n
∈
1
…
x
→
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
x
125
1
67
79
124
fsumle
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
∑
n
=
1
x
1
x
126
hashfz1
⊢
x
∈
ℕ
0
→
1
…
x
=
x
127
73
126
syl
⊢
x
∈
ℝ
+
→
1
…
x
=
x
128
127
oveq1d
⊢
x
∈
ℝ
+
→
1
…
x
1
x
=
x
1
x
129
77
rpcnd
⊢
x
∈
ℝ
+
→
1
x
∈
ℂ
130
fsumconst
⊢
1
…
x
∈
Fin
∧
1
x
∈
ℂ
→
∑
n
=
1
x
1
x
=
1
…
x
1
x
131
1
129
130
syl2anc
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
1
x
=
1
…
x
1
x
132
73
nn0cnd
⊢
x
∈
ℝ
+
→
x
∈
ℂ
133
rpcn
⊢
x
∈
ℝ
+
→
x
∈
ℂ
134
rpne0
⊢
x
∈
ℝ
+
→
x
≠
0
135
132
133
134
divrecd
⊢
x
∈
ℝ
+
→
x
x
=
x
1
x
136
128
131
135
3eqtr4d
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
1
x
=
x
x
137
125
136
breqtrd
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
x
x
138
rpre
⊢
x
∈
ℝ
+
→
x
∈
ℝ
139
flle
⊢
x
∈
ℝ
→
x
≤
x
140
138
139
syl
⊢
x
∈
ℝ
+
→
x
≤
x
141
133
mulridd
⊢
x
∈
ℝ
+
→
x
⋅
1
=
x
142
140
141
breqtrrd
⊢
x
∈
ℝ
+
→
x
≤
x
⋅
1
143
reflcl
⊢
x
∈
ℝ
→
x
∈
ℝ
144
138
143
syl
⊢
x
∈
ℝ
+
→
x
∈
ℝ
145
rpregt0
⊢
x
∈
ℝ
+
→
x
∈
ℝ
∧
0
<
x
146
ledivmul
⊢
x
∈
ℝ
∧
1
∈
ℝ
∧
x
∈
ℝ
∧
0
<
x
→
x
x
≤
1
↔
x
≤
x
⋅
1
147
144
69
145
146
syl3anc
⊢
x
∈
ℝ
+
→
x
x
≤
1
↔
x
≤
x
⋅
1
148
142
147
mpbird
⊢
x
∈
ℝ
+
→
x
x
≤
1
149
68
76
69
137
148
letrd
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
150
66
68
69
70
149
letrd
⊢
x
∈
ℝ
+
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
151
150
ad2antrl
⊢
⊤
∧
x
∈
ℝ
+
∧
1
≤
x
→
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
≤
1
152
59
64
65
65
151
elo1d
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
+
γ
∈
𝑂
1
153
58
152
eqeltrrid
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
−
∑
n
=
1
x
μ
n
n
γ
∈
𝑂
1
154
34
37
153
o1dif
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
𝑂
1
↔
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
γ
∈
𝑂
1
155
20
154
mpbird
⊢
⊤
→
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
𝑂
1
156
155
mptru
⊢
x
∈
ℝ
+
⟼
∑
n
=
1
x
μ
n
n
∑
m
=
1
x
n
1
m
−
log
x
n
∈
𝑂
1