Metamath Proof Explorer


Theorem opnvonmbllem2

Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses opnvonmbllem2.x φXFin
opnvonmbllem2.n S=domvolnX
opnvonmbllem2.g φGTopOpenmsup
opnvonmbl.k K=h×X|iX.hiG
Assertion opnvonmbllem2 φGS

Proof

Step Hyp Ref Expression
1 opnvonmbllem2.x φXFin
2 opnvonmbllem2.n S=domvolnX
3 opnvonmbllem2.g φGTopOpenmsup
4 opnvonmbl.k K=h×X|iX.hiG
5 eqid distmsup=distmsup
6 5 rrxmetfi XFindistmsupMetX
7 1 6 syl φdistmsupMetX
8 metxmet distmsupMetXdistmsup∞MetX
9 7 8 syl φdistmsup∞MetX
10 9 adantr φxGdistmsup∞MetX
11 eqid msup=msup
12 11 rrxval XFinmsup=toCPreHilfldfreeLModX
13 1 12 syl φmsup=toCPreHilfldfreeLModX
14 13 fveq2d φTopOpenmsup=TopOpentoCPreHilfldfreeLModX
15 ovex fldfreeLModXV
16 eqid toCPreHilfldfreeLModX=toCPreHilfldfreeLModX
17 eqid disttoCPreHilfldfreeLModX=disttoCPreHilfldfreeLModX
18 eqid TopOpentoCPreHilfldfreeLModX=TopOpentoCPreHilfldfreeLModX
19 16 17 18 tcphtopn fldfreeLModXVTopOpentoCPreHilfldfreeLModX=MetOpendisttoCPreHilfldfreeLModX
20 15 19 ax-mp TopOpentoCPreHilfldfreeLModX=MetOpendisttoCPreHilfldfreeLModX
21 20 a1i φTopOpentoCPreHilfldfreeLModX=MetOpendisttoCPreHilfldfreeLModX
22 13 eqcomd φtoCPreHilfldfreeLModX=msup
23 22 fveq2d φdisttoCPreHilfldfreeLModX=distmsup
24 23 fveq2d φMetOpendisttoCPreHilfldfreeLModX=MetOpendistmsup
25 14 21 24 3eqtrd φTopOpenmsup=MetOpendistmsup
26 3 25 eleqtrd φGMetOpendistmsup
27 26 adantr φxGGMetOpendistmsup
28 simpr φxGxG
29 eqid MetOpendistmsup=MetOpendistmsup
30 29 mopni2 distmsup∞MetXGMetOpendistmsupxGe+xballdistmsupeG
31 10 27 28 30 syl3anc φxGe+xballdistmsupeG
32 1 ad2antrr φxGe+XFin
33 eqid TopOpenmsup=TopOpenmsup
34 33 rrxtoponfi XFinTopOpenmsupTopOnX
35 1 34 syl φTopOpenmsupTopOnX
36 toponss TopOpenmsupTopOnXGTopOpenmsupGX
37 35 3 36 syl2anc φGX
38 37 adantr φxGGX
39 38 28 sseldd φxGxX
40 39 adantr φxGe+xX
41 simpr φxGe+e+
42 32 40 41 hoiqssbl φxGe+cXdXxiXcidiiXcidixballdistmsupe
43 42 3adant3 φxGe+xballdistmsupeGcXdXxiXcidiiXcidixballdistmsupe
44 nfv iφxballdistmsupeG
45 nfv icXdX
46 nfcv _ix
47 nfixp1 _iiXcidi
48 46 47 nfel ixiXcidi
49 nfcv _ixballdistmsupe
50 47 49 nfss iiXcidixballdistmsupe
51 48 50 nfan ixiXcidiiXcidixballdistmsupe
52 44 45 51 nf3an iφxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupe
53 1 adantr φxballdistmsupeGXFin
54 53 3ad2ant1 φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupeXFin
55 elmapi cXc:X
56 55 adantr cXdXc:X
57 56 3ad2ant2 φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupec:X
58 elmapi dXd:X
59 58 adantl cXdXd:X
60 59 3ad2ant2 φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsuped:X
61 simp3r φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupeiXcidixballdistmsupe
62 simp1r φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupexballdistmsupeG
63 simp3l φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupexiXcidi
64 eqid iXcidi=iXcidi
65 52 54 57 60 61 62 63 4 64 opnvonmbllem1 φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupehKxiX.hi
66 65 3exp φxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupehKxiX.hi
67 66 adantlr φxGxballdistmsupeGcXdXxiXcidiiXcidixballdistmsupehKxiX.hi
68 67 3adant2 φxGe+xballdistmsupeGcXdXxiXcidiiXcidixballdistmsupehKxiX.hi
69 68 rexlimdvv φxGe+xballdistmsupeGcXdXxiXcidiiXcidixballdistmsupehKxiX.hi
70 43 69 mpd φxGe+xballdistmsupeGhKxiX.hi
71 70 3exp φxGe+xballdistmsupeGhKxiX.hi
72 71 rexlimdv φxGe+xballdistmsupeGhKxiX.hi
73 31 72 mpd φxGhKxiX.hi
74 eliun xhKiX.hihKxiX.hi
75 73 74 sylibr φxGxhKiX.hi
76 75 ralrimiva φxGxhKiX.hi
77 dfss3 GhKiX.hixGxhKiX.hi
78 76 77 sylibr φGhKiX.hi
79 4 eleq2i hKhh×X|iX.hiG
80 79 biimpi hKhh×X|iX.hiG
81 80 adantl φhKhh×X|iX.hiG
82 rabid hh×X|iX.hiGh×XiX.hiG
83 81 82 sylib φhKh×XiX.hiG
84 83 simprd φhKiX.hiG
85 84 ralrimiva φhKiX.hiG
86 iunss hKiX.hiGhKiX.hiG
87 85 86 sylibr φhKiX.hiG
88 78 87 eqssd φG=hKiX.hi
89 1 2 dmovnsal φSSAlg
90 ssrab2 h×X|iX.hiG×X
91 4 90 eqsstri K×X
92 91 a1i φK×X
93 qct ω
94 93 a1i φω
95 xpct ωω×ω
96 94 94 95 syl2anc φ×ω
97 96 1 mpct φ×Xω
98 ssct K×X×XωKω
99 92 97 98 syl2anc φKω
100 reex V
101 100 100 xpex 2V
102 qssre
103 xpss12 ×2
104 102 102 103 mp2an ×2
105 mapss 2V×2×X2X
106 101 104 105 mp2an ×X2X
107 91 sseli hKh×X
108 106 107 sselid hKh2X
109 elmapi h2Xh:X2
110 108 109 syl hKh:X2
111 110 adantl φhKh:X2
112 2fveq3 k=i1sthk=1sthi
113 112 cbvmptv kX1sthk=iX1sthi
114 2fveq3 k=i2ndhk=2ndhi
115 114 cbvmptv kX2ndhk=iX2ndhi
116 111 113 115 hoicoto2 φhKiX.hi=iXkX1sthkikX2ndhki
117 1 adantr φhKXFin
118 111 ffvelcdmda φhKkXhk2
119 xp1st hk21sthk
120 118 119 syl φhKkX1sthk
121 120 fmpttd φhKkX1sthk:X
122 xp2nd hk22ndhk
123 118 122 syl φhKkX2ndhk
124 123 fmpttd φhKkX2ndhk:X
125 117 2 121 124 hoimbl φhKiXkX1sthkikX2ndhkiS
126 116 125 eqeltrd φhKiX.hiS
127 89 99 126 saliuncl φhKiX.hiS
128 88 127 eqeltrd φGS