| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnvonmbllem2.x |
|
| 2 |
|
opnvonmbllem2.n |
|
| 3 |
|
opnvonmbllem2.g |
|
| 4 |
|
opnvonmbl.k |
|
| 5 |
|
eqid |
|
| 6 |
5
|
rrxmetfi |
|
| 7 |
1 6
|
syl |
|
| 8 |
|
metxmet |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
adantr |
|
| 11 |
|
eqid |
|
| 12 |
11
|
rrxval |
|
| 13 |
1 12
|
syl |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
ovex |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
16 17 18
|
tcphtopn |
|
| 20 |
15 19
|
ax-mp |
|
| 21 |
20
|
a1i |
|
| 22 |
13
|
eqcomd |
|
| 23 |
22
|
fveq2d |
|
| 24 |
23
|
fveq2d |
|
| 25 |
14 21 24
|
3eqtrd |
|
| 26 |
3 25
|
eleqtrd |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
|
eqid |
|
| 30 |
29
|
mopni2 |
|
| 31 |
10 27 28 30
|
syl3anc |
|
| 32 |
1
|
ad2antrr |
|
| 33 |
|
eqid |
|
| 34 |
33
|
rrxtoponfi |
|
| 35 |
1 34
|
syl |
|
| 36 |
|
toponss |
|
| 37 |
35 3 36
|
syl2anc |
|
| 38 |
37
|
adantr |
|
| 39 |
38 28
|
sseldd |
|
| 40 |
39
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
32 40 41
|
hoiqssbl |
|
| 43 |
42
|
3adant3 |
|
| 44 |
|
nfv |
|
| 45 |
|
nfv |
|
| 46 |
|
nfcv |
|
| 47 |
|
nfixp1 |
|
| 48 |
46 47
|
nfel |
|
| 49 |
|
nfcv |
|
| 50 |
47 49
|
nfss |
|
| 51 |
48 50
|
nfan |
|
| 52 |
44 45 51
|
nf3an |
|
| 53 |
1
|
adantr |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
|
elmapi |
|
| 56 |
55
|
adantr |
|
| 57 |
56
|
3ad2ant2 |
|
| 58 |
|
elmapi |
|
| 59 |
58
|
adantl |
|
| 60 |
59
|
3ad2ant2 |
|
| 61 |
|
simp3r |
|
| 62 |
|
simp1r |
|
| 63 |
|
simp3l |
|
| 64 |
|
eqid |
|
| 65 |
52 54 57 60 61 62 63 4 64
|
opnvonmbllem1 |
|
| 66 |
65
|
3exp |
|
| 67 |
66
|
adantlr |
|
| 68 |
67
|
3adant2 |
|
| 69 |
68
|
rexlimdvv |
|
| 70 |
43 69
|
mpd |
|
| 71 |
70
|
3exp |
|
| 72 |
71
|
rexlimdv |
|
| 73 |
31 72
|
mpd |
|
| 74 |
|
eliun |
|
| 75 |
73 74
|
sylibr |
|
| 76 |
75
|
ralrimiva |
|
| 77 |
|
dfss3 |
|
| 78 |
76 77
|
sylibr |
|
| 79 |
4
|
eleq2i |
|
| 80 |
79
|
biimpi |
|
| 81 |
80
|
adantl |
|
| 82 |
|
rabid |
|
| 83 |
81 82
|
sylib |
|
| 84 |
83
|
simprd |
|
| 85 |
84
|
ralrimiva |
|
| 86 |
|
iunss |
|
| 87 |
85 86
|
sylibr |
|
| 88 |
78 87
|
eqssd |
|
| 89 |
1 2
|
dmovnsal |
|
| 90 |
|
ssrab2 |
|
| 91 |
4 90
|
eqsstri |
|
| 92 |
91
|
a1i |
|
| 93 |
|
qct |
|
| 94 |
93
|
a1i |
|
| 95 |
|
xpct |
|
| 96 |
94 94 95
|
syl2anc |
|
| 97 |
96 1
|
mpct |
|
| 98 |
|
ssct |
|
| 99 |
92 97 98
|
syl2anc |
|
| 100 |
|
reex |
|
| 101 |
100 100
|
xpex |
|
| 102 |
|
qssre |
|
| 103 |
|
xpss12 |
|
| 104 |
102 102 103
|
mp2an |
|
| 105 |
|
mapss |
|
| 106 |
101 104 105
|
mp2an |
|
| 107 |
91
|
sseli |
|
| 108 |
106 107
|
sselid |
|
| 109 |
|
elmapi |
|
| 110 |
108 109
|
syl |
|
| 111 |
110
|
adantl |
|
| 112 |
|
2fveq3 |
|
| 113 |
112
|
cbvmptv |
|
| 114 |
|
2fveq3 |
|
| 115 |
114
|
cbvmptv |
|
| 116 |
111 113 115
|
hoicoto2 |
|
| 117 |
1
|
adantr |
|
| 118 |
111
|
ffvelcdmda |
|
| 119 |
|
xp1st |
|
| 120 |
118 119
|
syl |
|
| 121 |
120
|
fmpttd |
|
| 122 |
|
xp2nd |
|
| 123 |
118 122
|
syl |
|
| 124 |
123
|
fmpttd |
|
| 125 |
117 2 121 124
|
hoimbl |
|
| 126 |
116 125
|
eqeltrd |
|
| 127 |
89 99 126
|
saliuncl |
|
| 128 |
88 127
|
eqeltrd |
|