Metamath Proof Explorer


Theorem pgpfac1lem5

Description: Lemma for pgpfac1 . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses pgpfac1.k K = mrCls SubGrp G
pgpfac1.s S = K A
pgpfac1.b B = Base G
pgpfac1.o O = od G
pgpfac1.e E = gEx G
pgpfac1.z 0 ˙ = 0 G
pgpfac1.l ˙ = LSSum G
pgpfac1.p φ P pGrp G
pgpfac1.g φ G Abel
pgpfac1.n φ B Fin
pgpfac1.oe φ O A = E
pgpfac1.u φ U SubGrp G
pgpfac1.au φ A U
pgpfac1.3 φ s SubGrp G s U A s t SubGrp G S t = 0 ˙ S ˙ t = s
Assertion pgpfac1lem5 φ t SubGrp G S t = 0 ˙ S ˙ t = U

Proof

Step Hyp Ref Expression
1 pgpfac1.k K = mrCls SubGrp G
2 pgpfac1.s S = K A
3 pgpfac1.b B = Base G
4 pgpfac1.o O = od G
5 pgpfac1.e E = gEx G
6 pgpfac1.z 0 ˙ = 0 G
7 pgpfac1.l ˙ = LSSum G
8 pgpfac1.p φ P pGrp G
9 pgpfac1.g φ G Abel
10 pgpfac1.n φ B Fin
11 pgpfac1.oe φ O A = E
12 pgpfac1.u φ U SubGrp G
13 pgpfac1.au φ A U
14 pgpfac1.3 φ s SubGrp G s U A s t SubGrp G S t = 0 ˙ S ˙ t = s
15 pwfi B Fin 𝒫 B Fin
16 10 15 sylib φ 𝒫 B Fin
17 16 adantr φ S U 𝒫 B Fin
18 3 subgss v SubGrp G v B
19 18 3ad2ant2 φ S U v SubGrp G v U A v v B
20 velpw v 𝒫 B v B
21 19 20 sylibr φ S U v SubGrp G v U A v v 𝒫 B
22 21 rabssdv φ S U v SubGrp G | v U A v 𝒫 B
23 17 22 ssfid φ S U v SubGrp G | v U A v Fin
24 finnum v SubGrp G | v U A v Fin v SubGrp G | v U A v dom card
25 23 24 syl φ S U v SubGrp G | v U A v dom card
26 ablgrp G Abel G Grp
27 9 26 syl φ G Grp
28 3 subgacs G Grp SubGrp G ACS B
29 acsmre SubGrp G ACS B SubGrp G Moore B
30 27 28 29 3syl φ SubGrp G Moore B
31 3 subgss U SubGrp G U B
32 12 31 syl φ U B
33 32 13 sseldd φ A B
34 1 mrcsncl SubGrp G Moore B A B K A SubGrp G
35 30 33 34 syl2anc φ K A SubGrp G
36 2 35 eqeltrid φ S SubGrp G
37 36 adantr φ S U S SubGrp G
38 simpr φ S U S U
39 13 snssd φ A U
40 39 32 sstrd φ A B
41 30 1 40 mrcssidd φ A K A
42 41 2 sseqtrrdi φ A S
43 snssg A B A S A S
44 33 43 syl φ A S A S
45 42 44 mpbird φ A S
46 45 adantr φ S U A S
47 psseq1 v = S v U S U
48 eleq2 v = S A v A S
49 47 48 anbi12d v = S v U A v S U A S
50 49 rspcev S SubGrp G S U A S v SubGrp G v U A v
51 37 38 46 50 syl12anc φ S U v SubGrp G v U A v
52 rabn0 v SubGrp G | v U A v v SubGrp G v U A v
53 51 52 sylibr φ S U v SubGrp G | v U A v
54 simpr1 φ S U u v SubGrp G | v U A v u [⊂] Or u u v SubGrp G | v U A v
55 simpr2 φ S U u v SubGrp G | v U A v u [⊂] Or u u
56 23 adantr φ S U u v SubGrp G | v U A v u [⊂] Or u v SubGrp G | v U A v Fin
57 56 54 ssfid φ S U u v SubGrp G | v U A v u [⊂] Or u u Fin
58 simpr3 φ S U u v SubGrp G | v U A v u [⊂] Or u [⊂] Or u
59 fin1a2lem10 u u Fin [⊂] Or u u u
60 55 57 58 59 syl3anc φ S U u v SubGrp G | v U A v u [⊂] Or u u u
61 54 60 sseldd φ S U u v SubGrp G | v U A v u [⊂] Or u u v SubGrp G | v U A v
62 61 ex φ S U u v SubGrp G | v U A v u [⊂] Or u u v SubGrp G | v U A v
63 62 alrimiv φ S U u u v SubGrp G | v U A v u [⊂] Or u u v SubGrp G | v U A v
64 zornn0g v SubGrp G | v U A v dom card v SubGrp G | v U A v u u v SubGrp G | v U A v u [⊂] Or u u v SubGrp G | v U A v s v SubGrp G | v U A v w v SubGrp G | v U A v ¬ s w
65 25 53 63 64 syl3anc φ S U s v SubGrp G | v U A v w v SubGrp G | v U A v ¬ s w
66 psseq1 v = w v U w U
67 eleq2 v = w A v A w
68 66 67 anbi12d v = w v U A v w U A w
69 68 ralrab w v SubGrp G | v U A v ¬ s w w SubGrp G w U A w ¬ s w
70 69 rexbii s v SubGrp G | v U A v w v SubGrp G | v U A v ¬ s w s v SubGrp G | v U A v w SubGrp G w U A w ¬ s w
71 65 70 sylib φ S U s v SubGrp G | v U A v w SubGrp G w U A w ¬ s w
72 71 ex φ S U s v SubGrp G | v U A v w SubGrp G w U A w ¬ s w
73 psseq1 v = s v U s U
74 eleq2 v = s A v A s
75 73 74 anbi12d v = s v U A v s U A s
76 75 ralrab s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s s SubGrp G s U A s t SubGrp G S t = 0 ˙ S ˙ t = s
77 14 76 sylibr φ s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s
78 r19.29 s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s s v SubGrp G | v U A v w SubGrp G w U A w ¬ s w s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s w SubGrp G w U A w ¬ s w
79 75 elrab s v SubGrp G | v U A v s SubGrp G s U A s
80 ineq2 t = v S t = S v
81 80 eqeq1d t = v S t = 0 ˙ S v = 0 ˙
82 oveq2 t = v S ˙ t = S ˙ v
83 82 eqeq1d t = v S ˙ t = s S ˙ v = s
84 81 83 anbi12d t = v S t = 0 ˙ S ˙ t = s S v = 0 ˙ S ˙ v = s
85 84 cbvrexvw t SubGrp G S t = 0 ˙ S ˙ t = s v SubGrp G S v = 0 ˙ S ˙ v = s
86 simprrl φ s SubGrp G s U A s s U
87 86 ad2antrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w s U
88 simpr2 φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w S ˙ v = s
89 88 psseq1d φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w S ˙ v U s U
90 87 89 mpbird φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w S ˙ v U
91 pssdif S ˙ v U U S ˙ v
92 n0 U S ˙ v b b U S ˙ v
93 91 92 sylib S ˙ v U b b U S ˙ v
94 90 93 syl φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b b U S ˙ v
95 8 ad3antrrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v P pGrp G
96 9 ad3antrrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v G Abel
97 10 ad3antrrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v B Fin
98 11 ad3antrrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v O A = E
99 12 ad3antrrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v U SubGrp G
100 13 ad3antrrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v A U
101 simplr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v v SubGrp G
102 simprl1 φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v S v = 0 ˙
103 90 adantrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v S ˙ v U
104 103 pssssd φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v S ˙ v U
105 simprl3 φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v w SubGrp G w U A w ¬ s w
106 88 adantrr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v S ˙ v = s
107 psseq1 S ˙ v = s S ˙ v y s y
108 107 notbid S ˙ v = s ¬ S ˙ v y ¬ s y
109 108 imbi2d S ˙ v = s y U A y ¬ S ˙ v y y U A y ¬ s y
110 109 ralbidv S ˙ v = s y SubGrp G y U A y ¬ S ˙ v y y SubGrp G y U A y ¬ s y
111 psseq1 y = w y U w U
112 eleq2 y = w A y A w
113 111 112 anbi12d y = w y U A y w U A w
114 psseq2 y = w s y s w
115 114 notbid y = w ¬ s y ¬ s w
116 113 115 imbi12d y = w y U A y ¬ s y w U A w ¬ s w
117 116 cbvralvw y SubGrp G y U A y ¬ s y w SubGrp G w U A w ¬ s w
118 110 117 bitrdi S ˙ v = s y SubGrp G y U A y ¬ S ˙ v y w SubGrp G w U A w ¬ s w
119 106 118 syl φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v y SubGrp G y U A y ¬ S ˙ v y w SubGrp G w U A w ¬ s w
120 105 119 mpbird φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v y SubGrp G y U A y ¬ S ˙ v y
121 simprr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v b U S ˙ v
122 eqid G = G
123 1 2 3 4 5 6 7 95 96 97 98 99 100 101 102 104 120 121 122 pgpfac1lem4 φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v t SubGrp G S t = 0 ˙ S ˙ t = U
124 123 expr φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b U S ˙ v t SubGrp G S t = 0 ˙ S ˙ t = U
125 124 exlimdv φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w b b U S ˙ v t SubGrp G S t = 0 ˙ S ˙ t = U
126 94 125 mpd φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
127 126 3exp2 φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
128 127 impd φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
129 128 rexlimdva φ s SubGrp G s U A s v SubGrp G S v = 0 ˙ S ˙ v = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
130 85 129 syl5bi φ s SubGrp G s U A s t SubGrp G S t = 0 ˙ S ˙ t = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
131 130 impd φ s SubGrp G s U A s t SubGrp G S t = 0 ˙ S ˙ t = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
132 79 131 sylan2b φ s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
133 132 rexlimdva φ s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
134 78 133 syl5 φ s v SubGrp G | v U A v t SubGrp G S t = 0 ˙ S ˙ t = s s v SubGrp G | v U A v w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
135 77 134 mpand φ s v SubGrp G | v U A v w SubGrp G w U A w ¬ s w t SubGrp G S t = 0 ˙ S ˙ t = U
136 72 135 syld φ S U t SubGrp G S t = 0 ˙ S ˙ t = U
137 6 0subg G Grp 0 ˙ SubGrp G
138 27 137 syl φ 0 ˙ SubGrp G
139 138 adantr φ S = U 0 ˙ SubGrp G
140 6 subg0cl S SubGrp G 0 ˙ S
141 36 140 syl φ 0 ˙ S
142 141 snssd φ 0 ˙ S
143 142 adantr φ S = U 0 ˙ S
144 sseqin2 0 ˙ S S 0 ˙ = 0 ˙
145 143 144 sylib φ S = U S 0 ˙ = 0 ˙
146 7 lsmss2 S SubGrp G 0 ˙ SubGrp G 0 ˙ S S ˙ 0 ˙ = S
147 36 138 142 146 syl3anc φ S ˙ 0 ˙ = S
148 147 eqeq1d φ S ˙ 0 ˙ = U S = U
149 148 biimpar φ S = U S ˙ 0 ˙ = U
150 ineq2 t = 0 ˙ S t = S 0 ˙
151 150 eqeq1d t = 0 ˙ S t = 0 ˙ S 0 ˙ = 0 ˙
152 oveq2 t = 0 ˙ S ˙ t = S ˙ 0 ˙
153 152 eqeq1d t = 0 ˙ S ˙ t = U S ˙ 0 ˙ = U
154 151 153 anbi12d t = 0 ˙ S t = 0 ˙ S ˙ t = U S 0 ˙ = 0 ˙ S ˙ 0 ˙ = U
155 154 rspcev 0 ˙ SubGrp G S 0 ˙ = 0 ˙ S ˙ 0 ˙ = U t SubGrp G S t = 0 ˙ S ˙ t = U
156 139 145 149 155 syl12anc φ S = U t SubGrp G S t = 0 ˙ S ˙ t = U
157 156 ex φ S = U t SubGrp G S t = 0 ˙ S ˙ t = U
158 1 mrcsscl SubGrp G Moore B A U U SubGrp G K A U
159 30 39 12 158 syl3anc φ K A U
160 2 159 eqsstrid φ S U
161 sspss S U S U S = U
162 160 161 sylib φ S U S = U
163 136 157 162 mpjaod φ t SubGrp G S t = 0 ˙ S ˙ t = U