Metamath Proof Explorer


Theorem ply1degltdim

Description: The space S of the univariate polynomials of degree less than N has dimension N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses ply1degltdim.p P=Poly1R
ply1degltdim.d D=deg1R
ply1degltdim.s S=D-1−∞N
ply1degltdim.n φN0
ply1degltdim.r φRDivRing
ply1degltdim.e E=P𝑠S
Assertion ply1degltdim φdimE=N

Proof

Step Hyp Ref Expression
1 ply1degltdim.p P=Poly1R
2 ply1degltdim.d D=deg1R
3 ply1degltdim.s S=D-1−∞N
4 ply1degltdim.n φN0
5 ply1degltdim.r φRDivRing
6 ply1degltdim.e E=P𝑠S
7 1 5 ply1lvec φPLVec
8 5 drngringd φRRing
9 1 2 3 4 8 ply1degltlss φSLSubSpP
10 eqid LSubSpP=LSubSpP
11 6 10 lsslvec PLVecSLSubSpPELVec
12 7 9 11 syl2anc φELVec
13 oveq1 k=nkmulGrpPvar1R=nmulGrpPvar1R
14 13 cbvmptv k0..^NkmulGrpPvar1R=n0..^NnmulGrpPvar1R
15 1 2 3 4 5 6 14 ply1degltdimlem φrank0..^NkmulGrpPvar1RLBasisE
16 eqid BaseP=BaseP
17 2 1 16 deg1xrf D:BaseP*
18 ffn D:BaseP*DFnBaseP
19 17 18 mp1i φn0..^NDFnBaseP
20 eqid mulGrpP=mulGrpP
21 20 16 mgpbas BaseP=BasemulGrpP
22 eqid mulGrpP=mulGrpP
23 1 ply1ring RRingPRing
24 20 ringmgp PRingmulGrpPMnd
25 8 23 24 3syl φmulGrpPMnd
26 25 adantr φn0..^NmulGrpPMnd
27 elfzonn0 n0..^Nn0
28 27 adantl φn0..^Nn0
29 eqid var1R=var1R
30 29 1 16 vr1cl RRingvar1RBaseP
31 8 30 syl φvar1RBaseP
32 31 adantr φn0..^Nvar1RBaseP
33 21 22 26 28 32 mulgnn0cld φn0..^NnmulGrpPvar1RBaseP
34 mnfxr −∞*
35 34 a1i φn0..^N−∞*
36 4 nn0red φN
37 36 rexrd φN*
38 37 adantr φn0..^NN*
39 2 1 16 deg1xrcl nmulGrpPvar1RBasePDnmulGrpPvar1R*
40 33 39 syl φn0..^NDnmulGrpPvar1R*
41 40 mnfled φn0..^N−∞DnmulGrpPvar1R
42 27 nn0red n0..^Nn
43 42 rexrd n0..^Nn*
44 43 adantl φn0..^Nn*
45 2 1 29 20 22 deg1pwle RRingn0DnmulGrpPvar1Rn
46 8 27 45 syl2an φn0..^NDnmulGrpPvar1Rn
47 elfzolt2 n0..^Nn<N
48 47 adantl φn0..^Nn<N
49 40 44 38 46 48 xrlelttrd φn0..^NDnmulGrpPvar1R<N
50 35 38 40 41 49 elicod φn0..^NDnmulGrpPvar1R−∞N
51 19 33 50 elpreimad φn0..^NnmulGrpPvar1RD-1−∞N
52 51 3 eleqtrrdi φn0..^NnmulGrpPvar1RS
53 16 10 lssss SLSubSpPSBaseP
54 6 16 ressbas2 SBasePS=BaseE
55 9 53 54 3syl φS=BaseE
56 55 adantr φn0..^NS=BaseE
57 52 56 eleqtrd φn0..^NnmulGrpPvar1RBaseE
58 57 14 fmptd φk0..^NkmulGrpPvar1R:0..^NBaseE
59 58 ffnd φk0..^NkmulGrpPvar1RFn0..^N
60 hashfn k0..^NkmulGrpPvar1RFn0..^Nk0..^NkmulGrpPvar1R=0..^N
61 59 60 syl φk0..^NkmulGrpPvar1R=0..^N
62 ovexd φ0..^NV
63 57 ralrimiva φn0..^NnmulGrpPvar1RBaseE
64 drngnzr RDivRingRNzRing
65 5 64 syl φRNzRing
66 65 ad2antrr φn0..^Ni0..^NRNzRing
67 28 adantr φn0..^Ni0..^Nn0
68 elfzonn0 i0..^Ni0
69 68 adantl φn0..^Ni0..^Ni0
70 1 29 22 66 67 69 ply1moneq φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
71 70 biimpd φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
72 71 anasss φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
73 72 ralrimivva φn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
74 oveq1 n=inmulGrpPvar1R=imulGrpPvar1R
75 14 74 f1mpt k0..^NkmulGrpPvar1R:0..^N1-1BaseEn0..^NnmulGrpPvar1RBaseEn0..^Ni0..^NnmulGrpPvar1R=imulGrpPvar1Rn=i
76 63 73 75 sylanbrc φk0..^NkmulGrpPvar1R:0..^N1-1BaseE
77 hashf1rn 0..^NVk0..^NkmulGrpPvar1R:0..^N1-1BaseEk0..^NkmulGrpPvar1R=rank0..^NkmulGrpPvar1R
78 62 76 77 syl2anc φk0..^NkmulGrpPvar1R=rank0..^NkmulGrpPvar1R
79 hashfzo0 N00..^N=N
80 4 79 syl φ0..^N=N
81 61 78 80 3eqtr3d φrank0..^NkmulGrpPvar1R=N
82 hashvnfin rank0..^NkmulGrpPvar1RLBasisEN0rank0..^NkmulGrpPvar1R=Nrank0..^NkmulGrpPvar1RFin
83 82 imp rank0..^NkmulGrpPvar1RLBasisEN0rank0..^NkmulGrpPvar1R=Nrank0..^NkmulGrpPvar1RFin
84 15 4 81 83 syl21anc φrank0..^NkmulGrpPvar1RFin
85 eqid LBasisE=LBasisE
86 85 dimvalfi ELVecrank0..^NkmulGrpPvar1RLBasisErank0..^NkmulGrpPvar1RFindimE=rank0..^NkmulGrpPvar1R
87 12 15 84 86 syl3anc φdimE=rank0..^NkmulGrpPvar1R
88 87 81 eqtrd φdimE=N