Metamath Proof Explorer


Theorem pntrlog2bndlem6

Description: Lemma for pntrlog2bnd . Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses pntsval.1 S = a i = 1 a Λ i log i + ψ a i
pntrlog2bnd.r R = a + ψ a a
pntrlog2bnd.t T = a if a + a log a 0
pntrlog2bndlem5.1 φ B +
pntrlog2bndlem5.2 φ y + R y y B
pntrlog2bndlem6.1 φ A
pntrlog2bndlem6.2 φ 1 A
Assertion pntrlog2bndlem6 φ x 1 +∞ R x log x 2 log x n = 1 x A R x n log n x 𝑂1

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 pntrlog2bnd.r R = a + ψ a a
3 pntrlog2bnd.t T = a if a + a log a 0
4 pntrlog2bndlem5.1 φ B +
5 pntrlog2bndlem5.2 φ y + R y y B
6 pntrlog2bndlem6.1 φ A
7 pntrlog2bndlem6.2 φ 1 A
8 elioore x 1 +∞ x
9 8 adantl φ x 1 +∞ x
10 1rp 1 +
11 10 a1i φ x 1 +∞ 1 +
12 1red φ x 1 +∞ 1
13 eliooord x 1 +∞ 1 < x x < +∞
14 13 adantl φ x 1 +∞ 1 < x x < +∞
15 14 simpld φ x 1 +∞ 1 < x
16 12 9 15 ltled φ x 1 +∞ 1 x
17 9 11 16 rpgecld φ x 1 +∞ x +
18 2 pntrf R : +
19 18 ffvelrni x + R x
20 17 19 syl φ x 1 +∞ R x
21 20 recnd φ x 1 +∞ R x
22 21 abscld φ x 1 +∞ R x
23 17 relogcld φ x 1 +∞ log x
24 22 23 remulcld φ x 1 +∞ R x log x
25 2re 2
26 25 a1i φ x 1 +∞ 2
27 9 15 rplogcld φ x 1 +∞ log x +
28 26 27 rerpdivcld φ x 1 +∞ 2 log x
29 fzfid φ x 1 +∞ 1 x Fin
30 17 adantr φ x 1 +∞ n 1 x x +
31 elfznn n 1 x n
32 31 adantl φ x 1 +∞ n 1 x n
33 32 nnrpd φ x 1 +∞ n 1 x n +
34 30 33 rpdivcld φ x 1 +∞ n 1 x x n +
35 18 ffvelrni x n + R x n
36 34 35 syl φ x 1 +∞ n 1 x R x n
37 36 recnd φ x 1 +∞ n 1 x R x n
38 37 abscld φ x 1 +∞ n 1 x R x n
39 33 relogcld φ x 1 +∞ n 1 x log n
40 38 39 remulcld φ x 1 +∞ n 1 x R x n log n
41 29 40 fsumrecl φ x 1 +∞ n = 1 x R x n log n
42 28 41 remulcld φ x 1 +∞ 2 log x n = 1 x R x n log n
43 24 42 resubcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n
44 43 recnd φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n
45 fzfid φ x 1 +∞ x A + 1 x Fin
46 ssun2 x A + 1 x 1 x A x A + 1 x
47 1 2 3 4 5 6 7 pntrlog2bndlem6a φ x 1 +∞ 1 x = 1 x A x A + 1 x
48 46 47 sseqtrrid φ x 1 +∞ x A + 1 x 1 x
49 48 sselda φ x 1 +∞ n x A + 1 x n 1 x
50 49 40 syldan φ x 1 +∞ n x A + 1 x R x n log n
51 45 50 fsumrecl φ x 1 +∞ n = x A + 1 x R x n log n
52 28 51 remulcld φ x 1 +∞ 2 log x n = x A + 1 x R x n log n
53 52 recnd φ x 1 +∞ 2 log x n = x A + 1 x R x n log n
54 9 recnd φ x 1 +∞ x
55 17 rpne0d φ x 1 +∞ x 0
56 44 53 54 55 divdird φ x 1 +∞ R x log x - 2 log x n = 1 x R x n log n + 2 log x n = x A + 1 x R x n log n x = R x log x 2 log x n = 1 x R x n log n x + 2 log x n = x A + 1 x R x n log n x
57 24 recnd φ x 1 +∞ R x log x
58 42 recnd φ x 1 +∞ 2 log x n = 1 x R x n log n
59 57 58 53 subsubd φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n 2 log x n = x A + 1 x R x n log n = R x log x - 2 log x n = 1 x R x n log n + 2 log x n = x A + 1 x R x n log n
60 28 recnd φ x 1 +∞ 2 log x
61 41 recnd φ x 1 +∞ n = 1 x R x n log n
62 51 recnd φ x 1 +∞ n = x A + 1 x R x n log n
63 60 61 62 subdid φ x 1 +∞ 2 log x n = 1 x R x n log n n = x A + 1 x R x n log n = 2 log x n = 1 x R x n log n 2 log x n = x A + 1 x R x n log n
64 fzfid φ x 1 +∞ 1 x A Fin
65 ssun1 1 x A 1 x A x A + 1 x
66 65 47 sseqtrrid φ x 1 +∞ 1 x A 1 x
67 66 sselda φ x 1 +∞ n 1 x A n 1 x
68 67 40 syldan φ x 1 +∞ n 1 x A R x n log n
69 64 68 fsumrecl φ x 1 +∞ n = 1 x A R x n log n
70 69 recnd φ x 1 +∞ n = 1 x A R x n log n
71 10 a1i φ 1 +
72 6 71 7 rpgecld φ A +
73 72 adantr φ x 1 +∞ A +
74 9 73 rerpdivcld φ x 1 +∞ x A
75 reflcl x A x A
76 74 75 syl φ x 1 +∞ x A
77 76 ltp1d φ x 1 +∞ x A < x A + 1
78 fzdisj x A < x A + 1 1 x A x A + 1 x =
79 77 78 syl φ x 1 +∞ 1 x A x A + 1 x =
80 40 recnd φ x 1 +∞ n 1 x R x n log n
81 79 47 29 80 fsumsplit φ x 1 +∞ n = 1 x R x n log n = n = 1 x A R x n log n + n = x A + 1 x R x n log n
82 70 62 81 mvrraddd φ x 1 +∞ n = 1 x R x n log n n = x A + 1 x R x n log n = n = 1 x A R x n log n
83 82 oveq2d φ x 1 +∞ 2 log x n = 1 x R x n log n n = x A + 1 x R x n log n = 2 log x n = 1 x A R x n log n
84 63 83 eqtr3d φ x 1 +∞ 2 log x n = 1 x R x n log n 2 log x n = x A + 1 x R x n log n = 2 log x n = 1 x A R x n log n
85 84 oveq2d φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n 2 log x n = x A + 1 x R x n log n = R x log x 2 log x n = 1 x A R x n log n
86 59 85 eqtr3d φ x 1 +∞ R x log x - 2 log x n = 1 x R x n log n + 2 log x n = x A + 1 x R x n log n = R x log x 2 log x n = 1 x A R x n log n
87 86 oveq1d φ x 1 +∞ R x log x - 2 log x n = 1 x R x n log n + 2 log x n = x A + 1 x R x n log n x = R x log x 2 log x n = 1 x A R x n log n x
88 56 87 eqtr3d φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x + 2 log x n = x A + 1 x R x n log n x = R x log x 2 log x n = 1 x A R x n log n x
89 88 mpteq2dva φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x + 2 log x n = x A + 1 x R x n log n x = x 1 +∞ R x log x 2 log x n = 1 x A R x n log n x
90 43 17 rerpdivcld φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x
91 52 17 rerpdivcld φ x 1 +∞ 2 log x n = x A + 1 x R x n log n x
92 1 2 3 4 5 pntrlog2bndlem5 φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x 𝑂1
93 ioossre 1 +∞
94 93 a1i φ 1 +∞
95 1red φ 1
96 25 a1i φ 2
97 4 rpred φ B
98 72 relogcld φ log A
99 98 95 readdcld φ log A + 1
100 97 99 remulcld φ B log A + 1
101 96 100 remulcld φ 2 B log A + 1
102 51 27 rerpdivcld φ x 1 +∞ n = x A + 1 x R x n log n log x
103 97 adantr φ x 1 +∞ B
104 73 relogcld φ x 1 +∞ log A
105 104 12 readdcld φ x 1 +∞ log A + 1
106 103 105 remulcld φ x 1 +∞ B log A + 1
107 9 106 remulcld φ x 1 +∞ x B log A + 1
108 2rp 2 +
109 108 a1i φ x 1 +∞ 2 +
110 109 rpge0d φ x 1 +∞ 0 2
111 103 9 remulcld φ x 1 +∞ B x
112 49 31 syl φ x 1 +∞ n x A + 1 x n
113 112 nnrecred φ x 1 +∞ n x A + 1 x 1 n
114 45 113 fsumrecl φ x 1 +∞ n = x A + 1 x 1 n
115 111 114 remulcld φ x 1 +∞ B x n = x A + 1 x 1 n
116 27 adantr φ x 1 +∞ n x A + 1 x log x +
117 50 116 rerpdivcld φ x 1 +∞ n x A + 1 x R x n log n log x
118 103 adantr φ x 1 +∞ n x A + 1 x B
119 9 adantr φ x 1 +∞ n x A + 1 x x
120 118 119 remulcld φ x 1 +∞ n x A + 1 x B x
121 120 113 remulcld φ x 1 +∞ n x A + 1 x B x 1 n
122 49 38 syldan φ x 1 +∞ n x A + 1 x R x n
123 119 112 nndivred φ x 1 +∞ n x A + 1 x x n
124 118 123 remulcld φ x 1 +∞ n x A + 1 x B x n
125 49 33 syldan φ x 1 +∞ n x A + 1 x n +
126 125 relogcld φ x 1 +∞ n x A + 1 x log n
127 17 adantr φ x 1 +∞ n x A + 1 x x +
128 127 relogcld φ x 1 +∞ n x A + 1 x log x
129 49 37 syldan φ x 1 +∞ n x A + 1 x R x n
130 129 absge0d φ x 1 +∞ n x A + 1 x 0 R x n
131 elfzle2 n x A + 1 x n x
132 131 adantl φ x 1 +∞ n x A + 1 x n x
133 112 nnzd φ x 1 +∞ n x A + 1 x n
134 flge x n n x n x
135 119 133 134 syl2anc φ x 1 +∞ n x A + 1 x n x n x
136 132 135 mpbird φ x 1 +∞ n x A + 1 x n x
137 125 127 logled φ x 1 +∞ n x A + 1 x n x log n log x
138 136 137 mpbid φ x 1 +∞ n x A + 1 x log n log x
139 126 128 122 130 138 lemul2ad φ x 1 +∞ n x A + 1 x R x n log n R x n log x
140 50 122 116 ledivmul2d φ x 1 +∞ n x A + 1 x R x n log n log x R x n R x n log n R x n log x
141 139 140 mpbird φ x 1 +∞ n x A + 1 x R x n log n log x R x n
142 123 recnd φ x 1 +∞ n x A + 1 x x n
143 49 34 syldan φ x 1 +∞ n x A + 1 x x n +
144 143 rpne0d φ x 1 +∞ n x A + 1 x x n 0
145 129 142 144 absdivd φ x 1 +∞ n x A + 1 x R x n x n = R x n x n
146 17 rpge0d φ x 1 +∞ 0 x
147 146 adantr φ x 1 +∞ n x A + 1 x 0 x
148 119 125 147 divge0d φ x 1 +∞ n x A + 1 x 0 x n
149 123 148 absidd φ x 1 +∞ n x A + 1 x x n = x n
150 149 oveq2d φ x 1 +∞ n x A + 1 x R x n x n = R x n x n
151 145 150 eqtrd φ x 1 +∞ n x A + 1 x R x n x n = R x n x n
152 fveq2 y = x n R y = R x n
153 id y = x n y = x n
154 152 153 oveq12d y = x n R y y = R x n x n
155 154 fveq2d y = x n R y y = R x n x n
156 155 breq1d y = x n R y y B R x n x n B
157 5 ad2antrr φ x 1 +∞ n x A + 1 x y + R y y B
158 156 157 143 rspcdva φ x 1 +∞ n x A + 1 x R x n x n B
159 151 158 eqbrtrrd φ x 1 +∞ n x A + 1 x R x n x n B
160 122 118 143 ledivmul2d φ x 1 +∞ n x A + 1 x R x n x n B R x n B x n
161 159 160 mpbid φ x 1 +∞ n x A + 1 x R x n B x n
162 117 122 124 141 161 letrd φ x 1 +∞ n x A + 1 x R x n log n log x B x n
163 118 recnd φ x 1 +∞ n x A + 1 x B
164 54 adantr φ x 1 +∞ n x A + 1 x x
165 112 nncnd φ x 1 +∞ n x A + 1 x n
166 112 nnne0d φ x 1 +∞ n x A + 1 x n 0
167 163 164 165 166 divassd φ x 1 +∞ n x A + 1 x B x n = B x n
168 163 164 mulcld φ x 1 +∞ n x A + 1 x B x
169 168 165 166 divrecd φ x 1 +∞ n x A + 1 x B x n = B x 1 n
170 167 169 eqtr3d φ x 1 +∞ n x A + 1 x B x n = B x 1 n
171 162 170 breqtrd φ x 1 +∞ n x A + 1 x R x n log n log x B x 1 n
172 45 117 121 171 fsumle φ x 1 +∞ n = x A + 1 x R x n log n log x n = x A + 1 x B x 1 n
173 23 recnd φ x 1 +∞ log x
174 49 80 syldan φ x 1 +∞ n x A + 1 x R x n log n
175 27 rpne0d φ x 1 +∞ log x 0
176 45 173 174 175 fsumdivc φ x 1 +∞ n = x A + 1 x R x n log n log x = n = x A + 1 x R x n log n log x
177 103 recnd φ x 1 +∞ B
178 177 54 mulcld φ x 1 +∞ B x
179 113 recnd φ x 1 +∞ n x A + 1 x 1 n
180 45 178 179 fsummulc2 φ x 1 +∞ B x n = x A + 1 x 1 n = n = x A + 1 x B x 1 n
181 172 176 180 3brtr4d φ x 1 +∞ n = x A + 1 x R x n log n log x B x n = x A + 1 x 1 n
182 4 adantr φ x 1 +∞ B +
183 182 rpge0d φ x 1 +∞ 0 B
184 103 9 183 146 mulge0d φ x 1 +∞ 0 B x
185 32 nnrecred φ x 1 +∞ n 1 x 1 n
186 29 185 fsumrecl φ x 1 +∞ n = 1 x 1 n
187 23 104 resubcld φ x 1 +∞ log x log A
188 23 12 readdcld φ x 1 +∞ log x + 1
189 67 185 syldan φ x 1 +∞ n 1 x A 1 n
190 64 189 fsumrecl φ x 1 +∞ n = 1 x A 1 n
191 harmonicubnd x 1 x n = 1 x 1 n log x + 1
192 9 16 191 syl2anc φ x 1 +∞ n = 1 x 1 n log x + 1
193 17 73 relogdivd φ x 1 +∞ log x A = log x log A
194 17 73 rpdivcld φ x 1 +∞ x A +
195 harmoniclbnd x A + log x A n = 1 x A 1 n
196 194 195 syl φ x 1 +∞ log x A n = 1 x A 1 n
197 193 196 eqbrtrrd φ x 1 +∞ log x log A n = 1 x A 1 n
198 186 187 188 190 192 197 le2subd φ x 1 +∞ n = 1 x 1 n n = 1 x A 1 n log x + 1 - log x log A
199 67 31 syl φ x 1 +∞ n 1 x A n
200 199 nnrecred φ x 1 +∞ n 1 x A 1 n
201 64 200 fsumrecl φ x 1 +∞ n = 1 x A 1 n
202 201 recnd φ x 1 +∞ n = 1 x A 1 n
203 114 recnd φ x 1 +∞ n = x A + 1 x 1 n
204 32 nncnd φ x 1 +∞ n 1 x n
205 32 nnne0d φ x 1 +∞ n 1 x n 0
206 204 205 reccld φ x 1 +∞ n 1 x 1 n
207 79 47 29 206 fsumsplit φ x 1 +∞ n = 1 x 1 n = n = 1 x A 1 n + n = x A + 1 x 1 n
208 202 203 207 mvrladdd φ x 1 +∞ n = 1 x 1 n n = 1 x A 1 n = n = x A + 1 x 1 n
209 1cnd φ x 1 +∞ 1
210 104 recnd φ x 1 +∞ log A
211 173 209 210 pnncand φ x 1 +∞ log x + 1 - log x log A = 1 + log A
212 209 210 211 comraddd φ x 1 +∞ log x + 1 - log x log A = log A + 1
213 198 208 212 3brtr3d φ x 1 +∞ n = x A + 1 x 1 n log A + 1
214 114 105 111 184 213 lemul2ad φ x 1 +∞ B x n = x A + 1 x 1 n B x log A + 1
215 105 recnd φ x 1 +∞ log A + 1
216 177 54 215 mulassd φ x 1 +∞ B x log A + 1 = B x log A + 1
217 177 54 215 mul12d φ x 1 +∞ B x log A + 1 = x B log A + 1
218 216 217 eqtrd φ x 1 +∞ B x log A + 1 = x B log A + 1
219 214 218 breqtrd φ x 1 +∞ B x n = x A + 1 x 1 n x B log A + 1
220 102 115 107 181 219 letrd φ x 1 +∞ n = x A + 1 x R x n log n log x x B log A + 1
221 102 107 26 110 220 lemul2ad φ x 1 +∞ 2 n = x A + 1 x R x n log n log x 2 x B log A + 1
222 2cnd φ x 1 +∞ 2
223 222 173 62 175 div32d φ x 1 +∞ 2 log x n = x A + 1 x R x n log n = 2 n = x A + 1 x R x n log n log x
224 210 209 addcld φ x 1 +∞ log A + 1
225 177 224 mulcld φ x 1 +∞ B log A + 1
226 54 222 225 mul12d φ x 1 +∞ x 2 B log A + 1 = 2 x B log A + 1
227 221 223 226 3brtr4d φ x 1 +∞ 2 log x n = x A + 1 x R x n log n x 2 B log A + 1
228 101 adantr φ x 1 +∞ 2 B log A + 1
229 52 228 17 ledivmuld φ x 1 +∞ 2 log x n = x A + 1 x R x n log n x 2 B log A + 1 2 log x n = x A + 1 x R x n log n x 2 B log A + 1
230 227 229 mpbird φ x 1 +∞ 2 log x n = x A + 1 x R x n log n x 2 B log A + 1
231 230 adantrr φ x 1 +∞ 1 x 2 log x n = x A + 1 x R x n log n x 2 B log A + 1
232 94 91 95 101 231 ello1d φ x 1 +∞ 2 log x n = x A + 1 x R x n log n x 𝑂1
233 90 91 92 232 lo1add φ x 1 +∞ R x log x 2 log x n = 1 x R x n log n x + 2 log x n = x A + 1 x R x n log n x 𝑂1
234 89 233 eqeltrrd φ x 1 +∞ R x log x 2 log x n = 1 x A R x n log n x 𝑂1