Metamath Proof Explorer


Theorem prmreclem3

Description: Lemma for prmrec . The main inequality established here is # M <_ # { x e. M | ( Qx ) = 1 } x. sqrt N , where { x e. M | ( Qx ) = 1 } is the set of squarefree numbers in M . This is demonstrated by the map y |-> <. y / ( Qy ) ^ 2 , ( Qy ) >. where Qy is the largest number whose square divides y . (Contributed by Mario Carneiro, 5-Aug-2014)

Ref Expression
Hypotheses prmrec.1 F=nifn1n0
prmrec.2 φK
prmrec.3 φN
prmrec.4 M=n1N|p1K¬pn
prmreclem2.5 Q=nsupr|r2n<
Assertion prmreclem3 φM2KN

Proof

Step Hyp Ref Expression
1 prmrec.1 F=nifn1n0
2 prmrec.2 φK
3 prmrec.3 φN
4 prmrec.4 M=n1N|p1K¬pn
5 prmreclem2.5 Q=nsupr|r2n<
6 fzfi 1NFin
7 4 ssrab3 M1N
8 ssfi 1NFinM1NMFin
9 6 7 8 mp2an MFin
10 hashcl MFinM0
11 9 10 ax-mp M0
12 11 nn0rei M
13 12 a1i φM
14 2nn 2
15 2 nnnn0d φK0
16 nnexpcl 2K02K
17 14 15 16 sylancr φ2K
18 17 nnnn0d φ2K0
19 3 nnrpd φN+
20 19 rpsqrtcld φN+
21 20 rprege0d φN0N
22 flge0nn0 N0NN0
23 21 22 syl φN0
24 18 23 nn0mulcld φ2KN0
25 24 nn0red φ2KN
26 17 nnred φ2K
27 20 rpred φN
28 26 27 remulcld φ2KN
29 ssrab2 xM|Qx=1M
30 ssfi MFinxM|Qx=1MxM|Qx=1Fin
31 9 29 30 mp2an xM|Qx=1Fin
32 hashcl xM|Qx=1FinxM|Qx=10
33 31 32 ax-mp xM|Qx=10
34 33 nn0rei xM|Qx=1
35 23 nn0red φN
36 remulcl xM|Qx=1NxM|Qx=1N
37 34 35 36 sylancr φxM|Qx=1N
38 fzfi 1NFin
39 xpfi xM|Qx=1Fin1NFinxM|Qx=1×1NFin
40 31 38 39 mp2an xM|Qx=1×1NFin
41 fveqeq2 x=yQy2Qx=1QyQy2=1
42 simpr φyMyM
43 7 42 sselid φyMy1N
44 elfznn y1Ny
45 43 44 syl φyMy
46 5 prmreclem1 yQyQy2yn2¬n2yQy2
47 46 simp2d yQy2y
48 45 47 syl φyMQy2y
49 46 simp1d yQy
50 45 49 syl φyMQy
51 50 nnsqcld φyMQy2
52 51 nnzd φyMQy2
53 51 nnne0d φyMQy20
54 45 nnzd φyMy
55 dvdsval2 Qy2Qy20yQy2yyQy2
56 52 53 54 55 syl3anc φyMQy2yyQy2
57 48 56 mpbid φyMyQy2
58 nnre yy
59 nngt0 y0<y
60 58 59 jca yy0<y
61 nnre Qy2Qy2
62 nngt0 Qy20<Qy2
63 61 62 jca Qy2Qy20<Qy2
64 divgt0 y0<yQy20<Qy20<yQy2
65 60 63 64 syl2an yQy20<yQy2
66 45 51 65 syl2anc φyM0<yQy2
67 elnnz yQy2yQy20<yQy2
68 57 66 67 sylanbrc φyMyQy2
69 68 nnred φyMyQy2
70 45 nnred φyMy
71 3 nnred φN
72 71 adantr φyMN
73 dvdsmul1 yQy2Qy2yQy2yQy2Qy2
74 57 52 73 syl2anc φyMyQy2yQy2Qy2
75 45 nncnd φyMy
76 51 nncnd φyMQy2
77 75 76 53 divcan1d φyMyQy2Qy2=y
78 74 77 breqtrd φyMyQy2y
79 dvdsle yQy2yyQy2yyQy2y
80 57 45 79 syl2anc φyMyQy2yyQy2y
81 78 80 mpd φyMyQy2y
82 elfzle2 y1NyN
83 43 82 syl φyMyN
84 69 70 72 81 83 letrd φyMyQy2N
85 nnuz =1
86 68 85 eleqtrdi φyMyQy21
87 3 nnzd φN
88 87 adantr φyMN
89 elfz5 yQy21NyQy21NyQy2N
90 86 88 89 syl2anc φyMyQy21NyQy2N
91 84 90 mpbird φyMyQy21N
92 breq2 n=ypnpy
93 92 notbid n=y¬pn¬py
94 93 ralbidv n=yp1K¬pnp1K¬py
95 94 4 elrab2 yMy1Np1K¬py
96 42 95 sylib φyMy1Np1K¬py
97 96 simprd φyMp1K¬py
98 78 adantr φyMp1KyQy2y
99 eldifi p1Kp
100 prmz pp
101 99 100 syl p1Kp
102 101 adantl φyMp1Kp
103 57 adantr φyMp1KyQy2
104 54 adantr φyMp1Ky
105 dvdstr pyQy2ypyQy2yQy2ypy
106 102 103 104 105 syl3anc φyMp1KpyQy2yQy2ypy
107 98 106 mpan2d φyMp1KpyQy2py
108 107 con3d φyMp1K¬py¬pyQy2
109 108 ralimdva φyMp1K¬pyp1K¬pyQy2
110 97 109 mpd φyMp1K¬pyQy2
111 breq2 n=yQy2pnpyQy2
112 111 notbid n=yQy2¬pn¬pyQy2
113 112 ralbidv n=yQy2p1K¬pnp1K¬pyQy2
114 113 4 elrab2 yQy2MyQy21Np1K¬pyQy2
115 91 110 114 sylanbrc φyMyQy2M
116 5 prmreclem1 yQy2QyQy2QyQy22yQy2A2¬A2yQy2QyQy22
117 116 simp2d yQy2QyQy22yQy2
118 68 117 syl φyMQyQy22yQy2
119 116 simp1d yQy2QyQy2
120 68 119 syl φyMQyQy2
121 elnn1uz2 QyQy2QyQy2=1QyQy22
122 120 121 sylib φyMQyQy2=1QyQy22
123 122 ord φyM¬QyQy2=1QyQy22
124 5 prmreclem1 yQyQy2yQyQy22¬QyQy22yQy2
125 124 simp3d yQyQy22¬QyQy22yQy2
126 45 123 125 sylsyld φyM¬QyQy2=1¬QyQy22yQy2
127 118 126 mt4d φyMQyQy2=1
128 41 115 127 elrabd φyMyQy2xM|Qx=1
129 51 nnred φyMQy2
130 dvdsle Qy2yQy2yQy2y
131 52 45 130 syl2anc φyMQy2yQy2y
132 48 131 mpd φyMQy2y
133 129 70 72 132 83 letrd φyMQy2N
134 72 recnd φyMN
135 134 sqsqrtd φyMN2=N
136 133 135 breqtrrd φyMQy2N2
137 50 nnrpd φyMQy+
138 20 adantr φyMN+
139 rprege0 Qy+Qy0Qy
140 rprege0 N+N0N
141 le2sq Qy0QyN0NQyNQy2N2
142 139 140 141 syl2an Qy+N+QyNQy2N2
143 137 138 142 syl2anc φyMQyNQy2N2
144 136 143 mpbird φyMQyN
145 27 adantr φyMN
146 50 nnzd φyMQy
147 flge NQyQyNQyN
148 145 146 147 syl2anc φyMQyNQyN
149 144 148 mpbid φyMQyN
150 50 85 eleqtrdi φyMQy1
151 23 nn0zd φN
152 151 adantr φyMN
153 elfz5 Qy1NQy1NQyN
154 150 152 153 syl2anc φyMQy1NQyN
155 149 154 mpbird φyMQy1N
156 128 155 opelxpd φyMyQy2QyxM|Qx=1×1N
157 156 ex φyMyQy2QyxM|Qx=1×1N
158 ovex yQy2V
159 fvex QyV
160 158 159 opth yQy2Qy=zQz2QzyQy2=zQz2Qy=Qz
161 oveq1 Qy=QzQy2=Qz2
162 oveq12 yQy2=zQz2Qy2=Qz2yQy2Qy2=zQz2Qz2
163 161 162 sylan2 yQy2=zQz2Qy=QzyQy2Qy2=zQz2Qz2
164 160 163 sylbi yQy2Qy=zQz2QzyQy2Qy2=zQz2Qz2
165 77 adantrr φyMzMyQy2Qy2=y
166 fz1ssnn 1N
167 7 166 sstri M
168 simprr φyMzMzM
169 167 168 sselid φyMzMz
170 169 nncnd φyMzMz
171 5 prmreclem1 zQzQz2z22¬22zQz2
172 171 simp1d zQz
173 169 172 syl φyMzMQz
174 173 nnsqcld φyMzMQz2
175 174 nncnd φyMzMQz2
176 174 nnne0d φyMzMQz20
177 170 175 176 divcan1d φyMzMzQz2Qz2=z
178 165 177 eqeq12d φyMzMyQy2Qy2=zQz2Qz2y=z
179 164 178 imbitrid φyMzMyQy2Qy=zQz2Qzy=z
180 id y=zy=z
181 fveq2 y=zQy=Qz
182 181 oveq1d y=zQy2=Qz2
183 180 182 oveq12d y=zyQy2=zQz2
184 183 181 opeq12d y=zyQy2Qy=zQz2Qz
185 179 184 impbid1 φyMzMyQy2Qy=zQz2Qzy=z
186 185 ex φyMzMyQy2Qy=zQz2Qzy=z
187 157 186 dom2d φxM|Qx=1×1NFinMxM|Qx=1×1N
188 40 187 mpi φMxM|Qx=1×1N
189 hashdom MFinxM|Qx=1×1NFinMxM|Qx=1×1NMxM|Qx=1×1N
190 9 40 189 mp2an MxM|Qx=1×1NMxM|Qx=1×1N
191 188 190 sylibr φMxM|Qx=1×1N
192 hashxp xM|Qx=1Fin1NFinxM|Qx=1×1N=xM|Qx=11N
193 31 38 192 mp2an xM|Qx=1×1N=xM|Qx=11N
194 hashfz1 N01N=N
195 23 194 syl φ1N=N
196 195 oveq2d φxM|Qx=11N=xM|Qx=1N
197 193 196 eqtrid φxM|Qx=1×1N=xM|Qx=1N
198 191 197 breqtrd φMxM|Qx=1N
199 34 a1i φxM|Qx=1
200 23 nn0ge0d φ0N
201 1 2 3 4 5 prmreclem2 φxM|Qx=12K
202 199 26 35 200 201 lemul1ad φxM|Qx=1N2KN
203 13 37 25 198 202 letrd φM2KN
204 17 nnrpd φ2K+
205 204 rprege0d φ2K02K
206 fllelt NNNN<N+1
207 27 206 syl φNNN<N+1
208 207 simpld φNN
209 lemul2a NN2K02KNN2KN2KN
210 35 27 205 208 209 syl31anc φ2KN2KN
211 13 25 28 203 210 letrd φM2KN