Metamath Proof Explorer


Theorem psrlidm

Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by AV, 8-Jul-2019)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psr1cl.d D=f0I|f-1Fin
psr1cl.z 0˙=0R
psr1cl.o 1˙=1R
psr1cl.u U=xDifx=I×01˙0˙
psr1cl.b B=BaseS
psrlidm.t ·˙=S
psrlidm.x φXB
Assertion psrlidm φU·˙X=X

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psr1cl.d D=f0I|f-1Fin
5 psr1cl.z 0˙=0R
6 psr1cl.o 1˙=1R
7 psr1cl.u U=xDifx=I×01˙0˙
8 psr1cl.b B=BaseS
9 psrlidm.t ·˙=S
10 psrlidm.x φXB
11 eqid BaseR=BaseR
12 1 2 3 4 5 6 7 8 psr1cl φUB
13 1 8 9 3 12 10 psrmulcl φU·˙XB
14 1 11 4 8 13 psrelbas φU·˙X:DBaseR
15 14 ffnd φU·˙XFnD
16 1 11 4 8 10 psrelbas φX:DBaseR
17 16 ffnd φXFnD
18 eqid R=R
19 12 adantr φyDUB
20 10 adantr φyDXB
21 simpr φyDyD
22 1 8 18 9 4 19 20 21 psrmulval φyDU·˙Xy=RzgD|gfyUzRXyfz
23 breq1 g=I×0gfyI×0fy
24 fconstmpt I×0=xI0
25 4 fczpsrbag IVxI0D
26 2 25 syl φxI0D
27 24 26 eqeltrid φI×0D
28 27 adantr φyDI×0D
29 4 psrbagf yDy:I0
30 29 adantl φyDy:I0
31 30 ffvelcdmda φyDxIyx0
32 31 nn0ge0d φyDxI0yx
33 32 ralrimiva φyDxI0yx
34 0nn0 00
35 34 fconst6 I×0:I0
36 ffn I×0:I0I×0FnI
37 35 36 mp1i φyDI×0FnI
38 30 ffnd φyDyFnI
39 2 adantr φyDIV
40 inidm II=I
41 34 a1i φyD00
42 fvconst2g 00xII×0x=0
43 41 42 sylan φyDxII×0x=0
44 eqidd φyDxIyx=yx
45 37 38 39 39 40 43 44 ofrfval φyDI×0fyxI0yx
46 33 45 mpbird φyDI×0fy
47 23 28 46 elrabd φyDI×0gD|gfy
48 47 snssd φyDI×0gD|gfy
49 48 resmptd φyDzgD|gfyUzRXyfzI×0=zI×0UzRXyfz
50 49 oveq2d φyDRzgD|gfyUzRXyfzI×0=RzI×0UzRXyfz
51 ringcmn RRingRCMnd
52 3 51 syl φRCMnd
53 52 adantr φyDRCMnd
54 ovex 0IV
55 4 54 rab2ex gD|gfyV
56 55 a1i φyDgD|gfyV
57 3 ad2antrr φyDzgD|gfyRRing
58 simpr φyDzgD|gfyzgD|gfy
59 breq1 g=zgfyzfy
60 59 elrab zgD|gfyzDzfy
61 58 60 sylib φyDzgD|gfyzDzfy
62 61 simpld φyDzgD|gfyzD
63 1 11 4 8 19 psrelbas φyDU:DBaseR
64 63 ffvelcdmda φyDzDUzBaseR
65 62 64 syldan φyDzgD|gfyUzBaseR
66 16 ad2antrr φyDzgD|gfyX:DBaseR
67 21 adantr φyDzgD|gfyyD
68 4 psrbagf zDz:I0
69 62 68 syl φyDzgD|gfyz:I0
70 61 simprd φyDzgD|gfyzfy
71 4 psrbagcon yDz:I0zfyyfzDyfzfy
72 67 69 70 71 syl3anc φyDzgD|gfyyfzDyfzfy
73 72 simpld φyDzgD|gfyyfzD
74 66 73 ffvelcdmd φyDzgD|gfyXyfzBaseR
75 11 18 ringcl RRingUzBaseRXyfzBaseRUzRXyfzBaseR
76 57 65 74 75 syl3anc φyDzgD|gfyUzRXyfzBaseR
77 76 fmpttd φyDzgD|gfyUzRXyfz:gD|gfyBaseR
78 eldifi zgD|gfyI×0zgD|gfy
79 78 61 sylan2 φyDzgD|gfyI×0zDzfy
80 79 simpld φyDzgD|gfyI×0zD
81 eqeq1 x=zx=I×0z=I×0
82 81 ifbid x=zifx=I×01˙0˙=ifz=I×01˙0˙
83 6 fvexi 1˙V
84 5 fvexi 0˙V
85 83 84 ifex ifz=I×01˙0˙V
86 82 7 85 fvmpt zDUz=ifz=I×01˙0˙
87 80 86 syl φyDzgD|gfyI×0Uz=ifz=I×01˙0˙
88 eldifn zgD|gfyI×0¬zI×0
89 88 adantl φyDzgD|gfyI×0¬zI×0
90 velsn zI×0z=I×0
91 89 90 sylnib φyDzgD|gfyI×0¬z=I×0
92 91 iffalsed φyDzgD|gfyI×0ifz=I×01˙0˙=0˙
93 87 92 eqtrd φyDzgD|gfyI×0Uz=0˙
94 93 oveq1d φyDzgD|gfyI×0UzRXyfz=0˙RXyfz
95 3 ad2antrr φyDzgD|gfyI×0RRing
96 78 74 sylan2 φyDzgD|gfyI×0XyfzBaseR
97 11 18 5 ringlz RRingXyfzBaseR0˙RXyfz=0˙
98 95 96 97 syl2anc φyDzgD|gfyI×00˙RXyfz=0˙
99 94 98 eqtrd φyDzgD|gfyI×0UzRXyfz=0˙
100 99 56 suppss2 φyDzgD|gfyUzRXyfzsupp0˙I×0
101 4 54 rabex2 DV
102 101 mptrabex zgD|gfyUzRXyfzV
103 102 a1i φyDzgD|gfyUzRXyfzV
104 funmpt FunzgD|gfyUzRXyfz
105 104 a1i φyDFunzgD|gfyUzRXyfz
106 84 a1i φyD0˙V
107 snfi I×0Fin
108 107 a1i φyDI×0Fin
109 suppssfifsupp zgD|gfyUzRXyfzVFunzgD|gfyUzRXyfz0˙VI×0FinzgD|gfyUzRXyfzsupp0˙I×0finSupp0˙zgD|gfyUzRXyfz
110 103 105 106 108 100 109 syl32anc φyDfinSupp0˙zgD|gfyUzRXyfz
111 11 5 53 56 77 100 110 gsumres φyDRzgD|gfyUzRXyfzI×0=RzgD|gfyUzRXyfz
112 3 adantr φyDRRing
113 ringmnd RRingRMnd
114 112 113 syl φyDRMnd
115 iftrue x=I×0ifx=I×01˙0˙=1˙
116 115 7 83 fvmpt I×0DUI×0=1˙
117 28 116 syl φyDUI×0=1˙
118 nn0cn z0z
119 118 subid1d z0z0=z
120 119 adantl φyDz0z0=z
121 39 30 41 120 caofid0r φyDyfI×0=y
122 121 fveq2d φyDXyfI×0=Xy
123 117 122 oveq12d φyDUI×0RXyfI×0=1˙RXy
124 16 ffvelcdmda φyDXyBaseR
125 11 18 6 ringlidm RRingXyBaseR1˙RXy=Xy
126 112 124 125 syl2anc φyD1˙RXy=Xy
127 123 126 eqtrd φyDUI×0RXyfI×0=Xy
128 127 124 eqeltrd φyDUI×0RXyfI×0BaseR
129 fveq2 z=I×0Uz=UI×0
130 oveq2 z=I×0yfz=yfI×0
131 130 fveq2d z=I×0Xyfz=XyfI×0
132 129 131 oveq12d z=I×0UzRXyfz=UI×0RXyfI×0
133 11 132 gsumsn RMndI×0DUI×0RXyfI×0BaseRRzI×0UzRXyfz=UI×0RXyfI×0
134 114 28 128 133 syl3anc φyDRzI×0UzRXyfz=UI×0RXyfI×0
135 50 111 134 3eqtr3d φyDRzgD|gfyUzRXyfz=UI×0RXyfI×0
136 22 135 127 3eqtrd φyDU·˙Xy=Xy
137 15 17 136 eqfnfvd φU·˙X=X