Metamath Proof Explorer


Theorem ramub1lem2

Description: Lemma for ramub1 . (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ramub1.m φM
ramub1.r φRFin
ramub1.f φF:R
ramub1.g G=xRMRamseyyRify=xFx1Fy
ramub1.1 φG:R0
ramub1.2 φM1RamseyG0
ramub1.3 C=aV,i0b𝒫a|b=i
ramub1.4 φSFin
ramub1.5 φS=M1RamseyG+1
ramub1.6 φK:SCMR
ramub1.x φXS
ramub1.h H=uSXCM1KuX
Assertion ramub1lem2 φcRz𝒫SFczzCMK-1c

Proof

Step Hyp Ref Expression
1 ramub1.m φM
2 ramub1.r φRFin
3 ramub1.f φF:R
4 ramub1.g G=xRMRamseyyRify=xFx1Fy
5 ramub1.1 φG:R0
6 ramub1.2 φM1RamseyG0
7 ramub1.3 C=aV,i0b𝒫a|b=i
8 ramub1.4 φSFin
9 ramub1.5 φS=M1RamseyG+1
10 ramub1.6 φK:SCMR
11 ramub1.x φXS
12 ramub1.h H=uSXCM1KuX
13 nnm1nn0 MM10
14 1 13 syl φM10
15 diffi SFinSXFin
16 8 15 syl φSXFin
17 6 nn0red φM1RamseyG
18 17 leidd φM1RamseyGM1RamseyG
19 hashcl SXFinSX0
20 16 19 syl φSX0
21 20 nn0cnd φSX
22 6 nn0cnd φM1RamseyG
23 1cnd φ1
24 undif1 SXX=SX
25 11 snssd φXS
26 ssequn2 XSSX=S
27 25 26 sylib φSX=S
28 24 27 eqtrid φSXX=S
29 28 fveq2d φSXX=S
30 neldifsnd φ¬XSX
31 hashunsng XSSXFin¬XSXSXX=SX+1
32 11 31 syl φSXFin¬XSXSXX=SX+1
33 16 30 32 mp2and φSXX=SX+1
34 29 33 9 3eqtr3d φSX+1=M1RamseyG+1
35 21 22 23 34 addcan2ad φSX=M1RamseyG
36 18 35 breqtrrd φM1RamseyGSX
37 10 adantr φuSXCM1K:SCMR
38 fveqeq2 x=uXx=MuX=M
39 7 hashbcval SXFinM10SXCM1=x𝒫SX|x=M1
40 16 14 39 syl2anc φSXCM1=x𝒫SX|x=M1
41 40 eleq2d φuSXCM1ux𝒫SX|x=M1
42 fveqeq2 x=ux=M1u=M1
43 42 elrab ux𝒫SX|x=M1u𝒫SXu=M1
44 41 43 bitrdi φuSXCM1u𝒫SXu=M1
45 44 simprbda φuSXCM1u𝒫SX
46 45 elpwid φuSXCM1uSX
47 46 difss2d φuSXCM1uS
48 25 adantr φuSXCM1XS
49 47 48 unssd φuSXCM1uXS
50 vex uV
51 snex XV
52 50 51 unex uXV
53 52 elpw uX𝒫SuXS
54 49 53 sylibr φuSXCM1uX𝒫S
55 16 adantr φuSXCM1SXFin
56 55 46 ssfid φuSXCM1uFin
57 neldifsnd φuSXCM1¬XSX
58 46 57 ssneldd φuSXCM1¬Xu
59 11 adantr φuSXCM1XS
60 hashunsng XSuFin¬XuuX=u+1
61 59 60 syl φuSXCM1uFin¬XuuX=u+1
62 56 58 61 mp2and φuSXCM1uX=u+1
63 44 simplbda φuSXCM1u=M1
64 63 oveq1d φuSXCM1u+1=M-1+1
65 1 nncnd φM
66 ax-1cn 1
67 npcan M1M-1+1=M
68 65 66 67 sylancl φM-1+1=M
69 68 adantr φuSXCM1M-1+1=M
70 62 64 69 3eqtrd φuSXCM1uX=M
71 38 54 70 elrabd φuSXCM1uXx𝒫S|x=M
72 1 nnnn0d φM0
73 7 hashbcval SFinM0SCM=x𝒫S|x=M
74 8 72 73 syl2anc φSCM=x𝒫S|x=M
75 74 adantr φuSXCM1SCM=x𝒫S|x=M
76 71 75 eleqtrrd φuSXCM1uXSCM
77 37 76 ffvelcdmd φuSXCM1KuXR
78 77 12 fmptd φH:SXCM1R
79 7 14 2 5 6 16 36 78 rami φdRw𝒫SXGdwwCM1H-1d
80 72 adantr φdRw𝒫SXGdwwCM1H-1dM0
81 2 adantr φdRw𝒫SXGdwwCM1H-1dRFin
82 3 adantr φdRw𝒫SXGdwwCM1H-1dF:R
83 simprll φdRw𝒫SXGdwwCM1H-1ddR
84 82 83 ffvelcdmd φdRw𝒫SXGdwwCM1H-1dFd
85 nnm1nn0 FdFd10
86 84 85 syl φdRw𝒫SXGdwwCM1H-1dFd10
87 86 adantr φdRw𝒫SXGdwwCM1H-1dyRFd10
88 82 ffvelcdmda φdRw𝒫SXGdwwCM1H-1dyRFy
89 88 nnnn0d φdRw𝒫SXGdwwCM1H-1dyRFy0
90 87 89 ifcld φdRw𝒫SXGdwwCM1H-1dyRify=dFd1Fy0
91 eqid yRify=dFd1Fy=yRify=dFd1Fy
92 90 91 fmptd φdRw𝒫SXGdwwCM1H-1dyRify=dFd1Fy:R0
93 equequ2 x=dy=xy=d
94 fveq2 x=dFx=Fd
95 94 oveq1d x=dFx1=Fd1
96 93 95 ifbieq1d x=dify=xFx1Fy=ify=dFd1Fy
97 96 mpteq2dv x=dyRify=xFx1Fy=yRify=dFd1Fy
98 97 oveq2d x=dMRamseyyRify=xFx1Fy=MRamseyyRify=dFd1Fy
99 ovex MRamseyyRify=dFd1FyV
100 98 4 99 fvmpt dRGd=MRamseyyRify=dFd1Fy
101 83 100 syl φdRw𝒫SXGdwwCM1H-1dGd=MRamseyyRify=dFd1Fy
102 5 adantr φdRw𝒫SXGdwwCM1H-1dG:R0
103 102 83 ffvelcdmd φdRw𝒫SXGdwwCM1H-1dGd0
104 101 103 eqeltrrd φdRw𝒫SXGdwwCM1H-1dMRamseyyRify=dFd1Fy0
105 simprlr φdRw𝒫SXGdwwCM1H-1dw𝒫SX
106 simprrl φdRw𝒫SXGdwwCM1H-1dGdw
107 101 106 eqbrtrrd φdRw𝒫SXGdwwCM1H-1dMRamseyyRify=dFd1Fyw
108 10 adantr φdRw𝒫SXGdwwCM1H-1dK:SCMR
109 8 adantr φdRw𝒫SXGdwwCM1H-1dSFin
110 105 elpwid φdRw𝒫SXGdwwCM1H-1dwSX
111 110 difss2d φdRw𝒫SXGdwwCM1H-1dwS
112 7 hashbcss SFinwSM0wCMSCM
113 109 111 80 112 syl3anc φdRw𝒫SXGdwwCM1H-1dwCMSCM
114 108 113 fssresd φdRw𝒫SXGdwwCM1H-1dKwCM:wCMR
115 7 80 81 92 104 105 107 114 rami φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1FycvvCMKwCM-1c
116 equequ1 y=cy=dc=d
117 fveq2 y=cFy=Fc
118 116 117 ifbieq2d y=cify=dFd1Fy=ifc=dFd1Fc
119 ovex Fd1V
120 fvex FcV
121 119 120 ifex ifc=dFd1FcV
122 118 91 121 fvmpt cRyRify=dFd1Fyc=ifc=dFd1Fc
123 122 ad2antrl φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1Fyc=ifc=dFd1Fc
124 123 breq1d φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1Fycvifc=dFd1Fcv
125 124 anbi1d φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1FycvvCMKwCM-1cifc=dFd1FcvvCMKwCM-1c
126 1 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cM
127 2 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cRFin
128 3 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cF:R
129 5 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cG:R0
130 6 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cM1RamseyG0
131 8 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cSFin
132 9 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cS=M1RamseyG+1
133 10 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cK:SCMR
134 11 ad2antrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cXS
135 83 adantr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cdR
136 110 adantr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cwSX
137 106 adantr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cGdw
138 simprrr φdRw𝒫SXGdwwCM1H-1dwCM1H-1d
139 138 adantr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cwCM1H-1d
140 simprll φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1ccR
141 simprlr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cv𝒫w
142 141 elpwid φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cvw
143 simprrl φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cifc=dFd1Fcv
144 simprrr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cvCMKwCM-1c
145 cnvresima KwCM-1c=K-1cwCM
146 inss1 K-1cwCMK-1c
147 145 146 eqsstri KwCM-1cK-1c
148 144 147 sstrdi φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cvCMK-1c
149 126 127 128 4 129 130 7 131 132 133 134 12 135 136 137 139 140 142 143 148 ramub1lem1 φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cz𝒫SFczzCMK-1c
150 149 expr φdRw𝒫SXGdwwCM1H-1dcRv𝒫wifc=dFd1FcvvCMKwCM-1cz𝒫SFczzCMK-1c
151 125 150 sylbid φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1FycvvCMKwCM-1cz𝒫SFczzCMK-1c
152 151 anassrs φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1FycvvCMKwCM-1cz𝒫SFczzCMK-1c
153 152 rexlimdva φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1FycvvCMKwCM-1cz𝒫SFczzCMK-1c
154 153 reximdva φdRw𝒫SXGdwwCM1H-1dcRv𝒫wyRify=dFd1FycvvCMKwCM-1ccRz𝒫SFczzCMK-1c
155 115 154 mpd φdRw𝒫SXGdwwCM1H-1dcRz𝒫SFczzCMK-1c
156 155 expr φdRw𝒫SXGdwwCM1H-1dcRz𝒫SFczzCMK-1c
157 156 rexlimdvva φdRw𝒫SXGdwwCM1H-1dcRz𝒫SFczzCMK-1c
158 79 157 mpd φcRz𝒫SFczzCMK-1c