Metamath Proof Explorer


Theorem reclem3pr

Description: Lemma for Proposition 9-3.7(v) of Gleason p. 124. (Contributed by NM, 30-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis reclempr.1 B=x|yx<𝑸y¬*𝑸yA
Assertion reclem3pr A𝑷1𝑷A𝑷B

Proof

Step Hyp Ref Expression
1 reclempr.1 B=x|yx<𝑸y¬*𝑸yA
2 df-1p 1𝑷=w|w<𝑸1𝑸
3 2 eqabri w1𝑷w<𝑸1𝑸
4 ltrnq w<𝑸1𝑸*𝑸1𝑸<𝑸*𝑸w
5 mulcomnq *𝑸1𝑸𝑸1𝑸=1𝑸𝑸*𝑸1𝑸
6 1nq 1𝑸𝑸
7 recclnq 1𝑸𝑸*𝑸1𝑸𝑸
8 mulidnq *𝑸1𝑸𝑸*𝑸1𝑸𝑸1𝑸=*𝑸1𝑸
9 6 7 8 mp2b *𝑸1𝑸𝑸1𝑸=*𝑸1𝑸
10 recidnq 1𝑸𝑸1𝑸𝑸*𝑸1𝑸=1𝑸
11 6 10 ax-mp 1𝑸𝑸*𝑸1𝑸=1𝑸
12 5 9 11 3eqtr3i *𝑸1𝑸=1𝑸
13 12 breq1i *𝑸1𝑸<𝑸*𝑸w1𝑸<𝑸*𝑸w
14 4 13 bitri w<𝑸1𝑸1𝑸<𝑸*𝑸w
15 prlem936 A𝑷1𝑸<𝑸*𝑸wvA¬v𝑸*𝑸wA
16 14 15 sylan2b A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wA
17 prnmax A𝑷vAzAv<𝑸z
18 17 ad2ant2r A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAzAv<𝑸z
19 elprnq A𝑷vAv𝑸
20 19 ad2ant2r A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv𝑸
21 20 3adant3 A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zv𝑸
22 simp1r A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zw<𝑸1𝑸
23 ltrelnq <𝑸𝑸×𝑸
24 23 brel w<𝑸1𝑸w𝑸1𝑸𝑸
25 24 simpld w<𝑸1𝑸w𝑸
26 22 25 syl A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zw𝑸
27 simp3 A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zv<𝑸z
28 simp2r A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸z¬v𝑸*𝑸wA
29 ltrnq v<𝑸z*𝑸z<𝑸*𝑸v
30 fvex *𝑸zV
31 fvex *𝑸vV
32 ltmnq u𝑸x<𝑸yu𝑸x<𝑸u𝑸y
33 vex wV
34 mulcomnq x𝑸y=y𝑸x
35 30 31 32 33 34 caovord2 w𝑸*𝑸z<𝑸*𝑸v*𝑸z𝑸w<𝑸*𝑸v𝑸w
36 29 35 bitrid w𝑸v<𝑸z*𝑸z𝑸w<𝑸*𝑸v𝑸w
37 36 adantl v𝑸w𝑸v<𝑸z*𝑸z𝑸w<𝑸*𝑸v𝑸w
38 37 biimpd v𝑸w𝑸v<𝑸z*𝑸z𝑸w<𝑸*𝑸v𝑸w
39 mulcomnq v𝑸*𝑸v=*𝑸v𝑸v
40 recidnq v𝑸v𝑸*𝑸v=1𝑸
41 39 40 eqtr3id v𝑸*𝑸v𝑸v=1𝑸
42 recidnq w𝑸w𝑸*𝑸w=1𝑸
43 41 42 oveqan12d v𝑸w𝑸*𝑸v𝑸v𝑸w𝑸*𝑸w=1𝑸𝑸1𝑸
44 vex vV
45 mulassnq x𝑸y𝑸u=x𝑸y𝑸u
46 fvex *𝑸wV
47 31 44 33 34 45 46 caov4 *𝑸v𝑸v𝑸w𝑸*𝑸w=*𝑸v𝑸w𝑸v𝑸*𝑸w
48 mulidnq 1𝑸𝑸1𝑸𝑸1𝑸=1𝑸
49 6 48 ax-mp 1𝑸𝑸1𝑸=1𝑸
50 43 47 49 3eqtr3g v𝑸w𝑸*𝑸v𝑸w𝑸v𝑸*𝑸w=1𝑸
51 recclnq v𝑸*𝑸v𝑸
52 mulclnq *𝑸v𝑸w𝑸*𝑸v𝑸w𝑸
53 51 52 sylan v𝑸w𝑸*𝑸v𝑸w𝑸
54 recmulnq *𝑸v𝑸w𝑸*𝑸*𝑸v𝑸w=v𝑸*𝑸w*𝑸v𝑸w𝑸v𝑸*𝑸w=1𝑸
55 53 54 syl v𝑸w𝑸*𝑸*𝑸v𝑸w=v𝑸*𝑸w*𝑸v𝑸w𝑸v𝑸*𝑸w=1𝑸
56 50 55 mpbird v𝑸w𝑸*𝑸*𝑸v𝑸w=v𝑸*𝑸w
57 56 eleq1d v𝑸w𝑸*𝑸*𝑸v𝑸wAv𝑸*𝑸wA
58 57 notbid v𝑸w𝑸¬*𝑸*𝑸v𝑸wA¬v𝑸*𝑸wA
59 58 biimprd v𝑸w𝑸¬v𝑸*𝑸wA¬*𝑸*𝑸v𝑸wA
60 38 59 anim12d v𝑸w𝑸v<𝑸z¬v𝑸*𝑸wA*𝑸z𝑸w<𝑸*𝑸v𝑸w¬*𝑸*𝑸v𝑸wA
61 ovex *𝑸v𝑸wV
62 breq2 y=*𝑸v𝑸w*𝑸z𝑸w<𝑸y*𝑸z𝑸w<𝑸*𝑸v𝑸w
63 fveq2 y=*𝑸v𝑸w*𝑸y=*𝑸*𝑸v𝑸w
64 63 eleq1d y=*𝑸v𝑸w*𝑸yA*𝑸*𝑸v𝑸wA
65 64 notbid y=*𝑸v𝑸w¬*𝑸yA¬*𝑸*𝑸v𝑸wA
66 62 65 anbi12d y=*𝑸v𝑸w*𝑸z𝑸w<𝑸y¬*𝑸yA*𝑸z𝑸w<𝑸*𝑸v𝑸w¬*𝑸*𝑸v𝑸wA
67 61 66 spcev *𝑸z𝑸w<𝑸*𝑸v𝑸w¬*𝑸*𝑸v𝑸wAy*𝑸z𝑸w<𝑸y¬*𝑸yA
68 ovex *𝑸z𝑸wV
69 breq1 x=*𝑸z𝑸wx<𝑸y*𝑸z𝑸w<𝑸y
70 69 anbi1d x=*𝑸z𝑸wx<𝑸y¬*𝑸yA*𝑸z𝑸w<𝑸y¬*𝑸yA
71 70 exbidv x=*𝑸z𝑸wyx<𝑸y¬*𝑸yAy*𝑸z𝑸w<𝑸y¬*𝑸yA
72 68 71 1 elab2 *𝑸z𝑸wBy*𝑸z𝑸w<𝑸y¬*𝑸yA
73 67 72 sylibr *𝑸z𝑸w<𝑸*𝑸v𝑸w¬*𝑸*𝑸v𝑸wA*𝑸z𝑸wB
74 60 73 syl6 v𝑸w𝑸v<𝑸z¬v𝑸*𝑸wA*𝑸z𝑸wB
75 74 imp v𝑸w𝑸v<𝑸z¬v𝑸*𝑸wA*𝑸z𝑸wB
76 21 26 27 28 75 syl22anc A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸z*𝑸z𝑸wB
77 23 brel v<𝑸zv𝑸z𝑸
78 77 simprd v<𝑸zz𝑸
79 78 3ad2ant3 A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zz𝑸
80 mulidnq w𝑸w𝑸1𝑸=w
81 mulcomnq w𝑸1𝑸=1𝑸𝑸w
82 80 81 eqtr3di w𝑸w=1𝑸𝑸w
83 recidnq z𝑸z𝑸*𝑸z=1𝑸
84 83 oveq1d z𝑸z𝑸*𝑸z𝑸w=1𝑸𝑸w
85 mulassnq z𝑸*𝑸z𝑸w=z𝑸*𝑸z𝑸w
86 84 85 eqtr3di z𝑸1𝑸𝑸w=z𝑸*𝑸z𝑸w
87 82 86 sylan9eqr z𝑸w𝑸w=z𝑸*𝑸z𝑸w
88 79 26 87 syl2anc A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zw=z𝑸*𝑸z𝑸w
89 oveq2 x=*𝑸z𝑸wz𝑸x=z𝑸*𝑸z𝑸w
90 89 rspceeqv *𝑸z𝑸wBw=z𝑸*𝑸z𝑸wxBw=z𝑸x
91 76 88 90 syl2anc A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zxBw=z𝑸x
92 91 3expia A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAv<𝑸zxBw=z𝑸x
93 92 reximdv A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAzAv<𝑸zzAxBw=z𝑸x
94 1 reclem2pr A𝑷B𝑷
95 df-mp 𝑷=y𝑷,w𝑷u|fygwu=f𝑸g
96 mulclnq f𝑸g𝑸f𝑸g𝑸
97 95 96 genpelv A𝑷B𝑷wA𝑷BzAxBw=z𝑸x
98 94 97 mpdan A𝑷wA𝑷BzAxBw=z𝑸x
99 98 ad2antrr A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAwA𝑷BzAxBw=z𝑸x
100 93 99 sylibrd A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAzAv<𝑸zwA𝑷B
101 18 100 mpd A𝑷w<𝑸1𝑸vA¬v𝑸*𝑸wAwA𝑷B
102 16 101 rexlimddv A𝑷w<𝑸1𝑸wA𝑷B
103 102 ex A𝑷w<𝑸1𝑸wA𝑷B
104 3 103 biimtrid A𝑷w1𝑷wA𝑷B
105 104 ssrdv A𝑷1𝑷A𝑷B