Metamath Proof Explorer


Theorem sge0cl

Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0cl.x φ X V
sge0cl.f φ F : X 0 +∞
Assertion sge0cl φ sum^ F 0 +∞

Proof

Step Hyp Ref Expression
1 sge0cl.x φ X V
2 sge0cl.f φ F : X 0 +∞
3 fveq2 F = sum^ F = sum^
4 sge00 sum^ = 0
5 4 a1i F = sum^ = 0
6 3 5 eqtrd F = sum^ F = 0
7 0e0iccpnf 0 0 +∞
8 7 a1i F = 0 0 +∞
9 6 8 eqeltrd F = sum^ F 0 +∞
10 9 adantl φ F = sum^ F 0 +∞
11 1 adantr φ +∞ ran F X V
12 2 adantr φ +∞ ran F F : X 0 +∞
13 simpr φ +∞ ran F +∞ ran F
14 11 12 13 sge0pnfval φ +∞ ran F sum^ F = +∞
15 pnfel0pnf +∞ 0 +∞
16 15 a1i φ +∞ ran F +∞ 0 +∞
17 14 16 eqeltrd φ +∞ ran F sum^ F 0 +∞
18 17 adantlr φ ¬ F = +∞ ran F sum^ F 0 +∞
19 simpll φ ¬ F = ¬ +∞ ran F φ
20 neqne ¬ F = F
21 20 ad2antlr φ ¬ F = ¬ +∞ ran F F
22 simpr φ ¬ F = ¬ +∞ ran F ¬ +∞ ran F
23 0xr 0 *
24 23 a1i φ F ¬ +∞ ran F 0 *
25 pnfxr +∞ *
26 25 a1i φ F ¬ +∞ ran F +∞ *
27 1 adantr φ ¬ +∞ ran F X V
28 2 adantr φ ¬ +∞ ran F F : X 0 +∞
29 simpr φ ¬ +∞ ran F ¬ +∞ ran F
30 28 29 fge0iccico φ ¬ +∞ ran F F : X 0 +∞
31 27 30 sge0reval φ ¬ +∞ ran F sum^ F = sup ran x 𝒫 X Fin y x F y * <
32 elinel2 x 𝒫 X Fin x Fin
33 32 adantl φ ¬ +∞ ran F x 𝒫 X Fin x Fin
34 2 ad2antrr φ x 𝒫 X Fin y x F : X 0 +∞
35 elinel1 x 𝒫 X Fin x 𝒫 X
36 elpwi x 𝒫 X x X
37 35 36 syl x 𝒫 X Fin x X
38 37 adantl φ x 𝒫 X Fin x X
39 38 adantr φ x 𝒫 X Fin y x x X
40 simpr φ x 𝒫 X Fin y x y x
41 39 40 sseldd φ x 𝒫 X Fin y x y X
42 34 41 ffvelrnd φ x 𝒫 X Fin y x F y 0 +∞
43 42 adantllr φ ¬ +∞ ran F x 𝒫 X Fin y x F y 0 +∞
44 nne ¬ F y +∞ F y = +∞
45 44 biimpi ¬ F y +∞ F y = +∞
46 45 eqcomd ¬ F y +∞ +∞ = F y
47 46 adantl φ ¬ +∞ ran F x 𝒫 X Fin y x ¬ F y +∞ +∞ = F y
48 2 ffund φ Fun F
49 48 3ad2ant1 φ x 𝒫 X Fin y x Fun F
50 41 3impa φ x 𝒫 X Fin y x y X
51 2 fdmd φ dom F = X
52 51 eqcomd φ X = dom F
53 52 3ad2ant1 φ x 𝒫 X Fin y x X = dom F
54 50 53 eleqtrd φ x 𝒫 X Fin y x y dom F
55 fvelrn Fun F y dom F F y ran F
56 49 54 55 syl2anc φ x 𝒫 X Fin y x F y ran F
57 56 ad5ant134 φ ¬ +∞ ran F x 𝒫 X Fin y x ¬ F y +∞ F y ran F
58 47 57 eqeltrd φ ¬ +∞ ran F x 𝒫 X Fin y x ¬ F y +∞ +∞ ran F
59 29 ad3antrrr φ ¬ +∞ ran F x 𝒫 X Fin y x ¬ F y +∞ ¬ +∞ ran F
60 58 59 condan φ ¬ +∞ ran F x 𝒫 X Fin y x F y +∞
61 ge0xrre F y 0 +∞ F y +∞ F y
62 43 60 61 syl2anc φ ¬ +∞ ran F x 𝒫 X Fin y x F y
63 33 62 fsumrecl φ ¬ +∞ ran F x 𝒫 X Fin y x F y
64 63 ralrimiva φ ¬ +∞ ran F x 𝒫 X Fin y x F y
65 eqid x 𝒫 X Fin y x F y = x 𝒫 X Fin y x F y
66 65 rnmptss x 𝒫 X Fin y x F y ran x 𝒫 X Fin y x F y
67 64 66 syl φ ¬ +∞ ran F ran x 𝒫 X Fin y x F y
68 ressxr *
69 68 a1i φ ¬ +∞ ran F *
70 67 69 sstrd φ ¬ +∞ ran F ran x 𝒫 X Fin y x F y *
71 supxrcl ran x 𝒫 X Fin y x F y * sup ran x 𝒫 X Fin y x F y * < *
72 70 71 syl φ ¬ +∞ ran F sup ran x 𝒫 X Fin y x F y * < *
73 31 72 eqeltrd φ ¬ +∞ ran F sum^ F *
74 73 adantlr φ F ¬ +∞ ran F sum^ F *
75 52 adantr φ F X = dom F
76 neneq F ¬ F =
77 76 adantl φ F ¬ F =
78 frel F : X 0 +∞ Rel F
79 2 78 syl φ Rel F
80 79 adantr φ F Rel F
81 reldm0 Rel F F = dom F =
82 80 81 syl φ F F = dom F =
83 77 82 mtbid φ F ¬ dom F =
84 83 neqned φ F dom F
85 75 84 eqnetrd φ F X
86 n0 X z z X
87 85 86 sylib φ F z z X
88 87 adantr φ F ¬ +∞ ran F z z X
89 23 a1i φ ¬ +∞ ran F z X 0 *
90 2 ffvelrnda φ z X F z 0 +∞
91 90 adantlr φ ¬ +∞ ran F z X F z 0 +∞
92 nne ¬ F z +∞ F z = +∞
93 92 biimpi ¬ F z +∞ F z = +∞
94 93 eqcomd ¬ F z +∞ +∞ = F z
95 94 adantl φ ¬ +∞ ran F z X ¬ F z +∞ +∞ = F z
96 2 adantr φ z X F : X 0 +∞
97 96 ffund φ z X Fun F
98 simpr φ z X z X
99 52 adantr φ z X X = dom F
100 98 99 eleqtrd φ z X z dom F
101 fvelrn Fun F z dom F F z ran F
102 97 100 101 syl2anc φ z X F z ran F
103 102 adantlr φ ¬ +∞ ran F z X F z ran F
104 103 adantr φ ¬ +∞ ran F z X ¬ F z +∞ F z ran F
105 95 104 eqeltrd φ ¬ +∞ ran F z X ¬ F z +∞ +∞ ran F
106 29 ad2antrr φ ¬ +∞ ran F z X ¬ F z +∞ ¬ +∞ ran F
107 105 106 condan φ ¬ +∞ ran F z X F z +∞
108 ge0xrre F z 0 +∞ F z +∞ F z
109 91 107 108 syl2anc φ ¬ +∞ ran F z X F z
110 109 rexrd φ ¬ +∞ ran F z X F z *
111 73 adantr φ ¬ +∞ ran F z X sum^ F *
112 23 a1i φ z X 0 *
113 25 a1i φ z X +∞ *
114 iccgelb 0 * +∞ * F z 0 +∞ 0 F z
115 112 113 90 114 syl3anc φ z X 0 F z
116 115 adantlr φ ¬ +∞ ran F z X 0 F z
117 70 adantr φ ¬ +∞ ran F z X ran x 𝒫 X Fin y x F y *
118 snelpwi z X z 𝒫 X
119 snfi z Fin
120 119 a1i z X z Fin
121 118 120 elind z X z 𝒫 X Fin
122 121 adantl φ ¬ +∞ ran F z X z 𝒫 X Fin
123 simpr φ ¬ +∞ ran F z X z X
124 109 recnd φ ¬ +∞ ran F z X F z
125 fveq2 y = z F y = F z
126 125 sumsn z X F z y z F y = F z
127 123 124 126 syl2anc φ ¬ +∞ ran F z X y z F y = F z
128 127 eqcomd φ ¬ +∞ ran F z X F z = y z F y
129 sumeq1 x = z y x F y = y z F y
130 129 rspceeqv z 𝒫 X Fin F z = y z F y x 𝒫 X Fin F z = y x F y
131 122 128 130 syl2anc φ ¬ +∞ ran F z X x 𝒫 X Fin F z = y x F y
132 65 elrnmpt F z 0 +∞ F z ran x 𝒫 X Fin y x F y x 𝒫 X Fin F z = y x F y
133 91 132 syl φ ¬ +∞ ran F z X F z ran x 𝒫 X Fin y x F y x 𝒫 X Fin F z = y x F y
134 131 133 mpbird φ ¬ +∞ ran F z X F z ran x 𝒫 X Fin y x F y
135 supxrub ran x 𝒫 X Fin y x F y * F z ran x 𝒫 X Fin y x F y F z sup ran x 𝒫 X Fin y x F y * <
136 117 134 135 syl2anc φ ¬ +∞ ran F z X F z sup ran x 𝒫 X Fin y x F y * <
137 31 eqcomd φ ¬ +∞ ran F sup ran x 𝒫 X Fin y x F y * < = sum^ F
138 137 adantr φ ¬ +∞ ran F z X sup ran x 𝒫 X Fin y x F y * < = sum^ F
139 136 138 breqtrd φ ¬ +∞ ran F z X F z sum^ F
140 89 110 111 116 139 xrletrd φ ¬ +∞ ran F z X 0 sum^ F
141 140 ex φ ¬ +∞ ran F z X 0 sum^ F
142 141 adantlr φ F ¬ +∞ ran F z X 0 sum^ F
143 142 exlimdv φ F ¬ +∞ ran F z z X 0 sum^ F
144 88 143 mpd φ F ¬ +∞ ran F 0 sum^ F
145 pnfge sum^ F * sum^ F +∞
146 73 145 syl φ ¬ +∞ ran F sum^ F +∞
147 146 adantlr φ F ¬ +∞ ran F sum^ F +∞
148 24 26 74 144 147 eliccxrd φ F ¬ +∞ ran F sum^ F 0 +∞
149 19 21 22 148 syl21anc φ ¬ F = ¬ +∞ ran F sum^ F 0 +∞
150 18 149 pm2.61dan φ ¬ F = sum^ F 0 +∞
151 10 150 pm2.61dan φ sum^ F 0 +∞