| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0cl.x |  | 
						
							| 2 |  | sge0cl.f |  | 
						
							| 3 |  | fveq2 |  | 
						
							| 4 |  | sge00 |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 | 3 5 | eqtrd |  | 
						
							| 7 |  | 0e0iccpnf |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 | 6 8 | eqeltrd |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 1 | adantr |  | 
						
							| 12 | 2 | adantr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 11 12 13 | sge0pnfval |  | 
						
							| 15 |  | pnfel0pnf |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 14 16 | eqeltrd |  | 
						
							| 18 | 17 | adantlr |  | 
						
							| 19 |  | simpll |  | 
						
							| 20 |  | neqne |  | 
						
							| 21 | 20 | ad2antlr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 |  | 0xr |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 |  | pnfxr |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 1 | adantr |  | 
						
							| 28 | 2 | adantr |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 | 28 29 | fge0iccico |  | 
						
							| 31 | 27 30 | sge0reval |  | 
						
							| 32 |  | elinel2 |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 2 | ad2antrr |  | 
						
							| 35 |  | elinel1 |  | 
						
							| 36 |  | elpwi |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 39 40 | sseldd |  | 
						
							| 42 | 34 41 | ffvelcdmd |  | 
						
							| 43 | 42 | adantllr |  | 
						
							| 44 |  | nne |  | 
						
							| 45 | 44 | biimpi |  | 
						
							| 46 | 45 | eqcomd |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 | 2 | ffund |  | 
						
							| 49 | 48 | 3ad2ant1 |  | 
						
							| 50 | 41 | 3impa |  | 
						
							| 51 | 2 | fdmd |  | 
						
							| 52 | 51 | eqcomd |  | 
						
							| 53 | 52 | 3ad2ant1 |  | 
						
							| 54 | 50 53 | eleqtrd |  | 
						
							| 55 |  | fvelrn |  | 
						
							| 56 | 49 54 55 | syl2anc |  | 
						
							| 57 | 56 | ad5ant134 |  | 
						
							| 58 | 47 57 | eqeltrd |  | 
						
							| 59 | 29 | ad3antrrr |  | 
						
							| 60 | 58 59 | condan |  | 
						
							| 61 |  | ge0xrre |  | 
						
							| 62 | 43 60 61 | syl2anc |  | 
						
							| 63 | 33 62 | fsumrecl |  | 
						
							| 64 | 63 | ralrimiva |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 | 65 | rnmptss |  | 
						
							| 67 | 64 66 | syl |  | 
						
							| 68 |  | ressxr |  | 
						
							| 69 | 68 | a1i |  | 
						
							| 70 | 67 69 | sstrd |  | 
						
							| 71 |  | supxrcl |  | 
						
							| 72 | 70 71 | syl |  | 
						
							| 73 | 31 72 | eqeltrd |  | 
						
							| 74 | 73 | adantlr |  | 
						
							| 75 | 52 | adantr |  | 
						
							| 76 |  | neneq |  | 
						
							| 77 | 76 | adantl |  | 
						
							| 78 |  | frel |  | 
						
							| 79 | 2 78 | syl |  | 
						
							| 80 | 79 | adantr |  | 
						
							| 81 |  | reldm0 |  | 
						
							| 82 | 80 81 | syl |  | 
						
							| 83 | 77 82 | mtbid |  | 
						
							| 84 | 83 | neqned |  | 
						
							| 85 | 75 84 | eqnetrd |  | 
						
							| 86 |  | n0 |  | 
						
							| 87 | 85 86 | sylib |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 | 23 | a1i |  | 
						
							| 90 | 2 | ffvelcdmda |  | 
						
							| 91 | 90 | adantlr |  | 
						
							| 92 |  | nne |  | 
						
							| 93 | 92 | biimpi |  | 
						
							| 94 | 93 | eqcomd |  | 
						
							| 95 | 94 | adantl |  | 
						
							| 96 | 2 | adantr |  | 
						
							| 97 | 96 | ffund |  | 
						
							| 98 |  | simpr |  | 
						
							| 99 | 52 | adantr |  | 
						
							| 100 | 98 99 | eleqtrd |  | 
						
							| 101 |  | fvelrn |  | 
						
							| 102 | 97 100 101 | syl2anc |  | 
						
							| 103 | 102 | adantlr |  | 
						
							| 104 | 103 | adantr |  | 
						
							| 105 | 95 104 | eqeltrd |  | 
						
							| 106 | 29 | ad2antrr |  | 
						
							| 107 | 105 106 | condan |  | 
						
							| 108 |  | ge0xrre |  | 
						
							| 109 | 91 107 108 | syl2anc |  | 
						
							| 110 | 109 | rexrd |  | 
						
							| 111 | 73 | adantr |  | 
						
							| 112 | 23 | a1i |  | 
						
							| 113 | 25 | a1i |  | 
						
							| 114 |  | iccgelb |  | 
						
							| 115 | 112 113 90 114 | syl3anc |  | 
						
							| 116 | 115 | adantlr |  | 
						
							| 117 | 70 | adantr |  | 
						
							| 118 |  | snelpwi |  | 
						
							| 119 |  | snfi |  | 
						
							| 120 | 119 | a1i |  | 
						
							| 121 | 118 120 | elind |  | 
						
							| 122 | 121 | adantl |  | 
						
							| 123 |  | simpr |  | 
						
							| 124 | 109 | recnd |  | 
						
							| 125 |  | fveq2 |  | 
						
							| 126 | 125 | sumsn |  | 
						
							| 127 | 123 124 126 | syl2anc |  | 
						
							| 128 | 127 | eqcomd |  | 
						
							| 129 |  | sumeq1 |  | 
						
							| 130 | 129 | rspceeqv |  | 
						
							| 131 | 122 128 130 | syl2anc |  | 
						
							| 132 | 65 | elrnmpt |  | 
						
							| 133 | 91 132 | syl |  | 
						
							| 134 | 131 133 | mpbird |  | 
						
							| 135 |  | supxrub |  | 
						
							| 136 | 117 134 135 | syl2anc |  | 
						
							| 137 | 31 | eqcomd |  | 
						
							| 138 | 137 | adantr |  | 
						
							| 139 | 136 138 | breqtrd |  | 
						
							| 140 | 89 110 111 116 139 | xrletrd |  | 
						
							| 141 | 140 | ex |  | 
						
							| 142 | 141 | adantlr |  | 
						
							| 143 | 142 | exlimdv |  | 
						
							| 144 | 88 143 | mpd |  | 
						
							| 145 |  | pnfge |  | 
						
							| 146 | 73 145 | syl |  | 
						
							| 147 | 146 | adantlr |  | 
						
							| 148 | 24 26 74 144 147 | eliccxrd |  | 
						
							| 149 | 19 21 22 148 | syl21anc |  | 
						
							| 150 | 18 149 | pm2.61dan |  | 
						
							| 151 | 10 150 | pm2.61dan |  |