Metamath Proof Explorer


Theorem stirlinglem15

Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem15.1 nφ
stirlinglem15.2 S=n02πnnen
stirlinglem15.3 A=nn!2nnen
stirlinglem15.4 D=nA2n
stirlinglem15.5 E=n2nnen
stirlinglem15.6 V=n24nn!42n!22n+1
stirlinglem15.7 F=nAn4Dn2
stirlinglem15.8 H=nn2n2n+1
stirlinglem15.9 φC+
stirlinglem15.10 φAC
Assertion stirlinglem15 φnn!Sn1

Proof

Step Hyp Ref Expression
1 stirlinglem15.1 nφ
2 stirlinglem15.2 S=n02πnnen
3 stirlinglem15.3 A=nn!2nnen
4 stirlinglem15.4 D=nA2n
5 stirlinglem15.5 E=n2nnen
6 stirlinglem15.6 V=n24nn!42n!22n+1
7 stirlinglem15.7 F=nAn4Dn2
8 stirlinglem15.8 H=nn2n2n+1
9 stirlinglem15.9 φC+
10 stirlinglem15.10 φAC
11 nnnn0 nn0
12 11 adantl φnn0
13 2cnd φn2
14 picn π
15 14 a1i φnπ
16 13 15 mulcld φn2π
17 nncn nn
18 17 adantl φnn
19 16 18 mulcld φn2πn
20 19 sqrtcld φn2πn
21 ere e
22 21 recni e
23 22 a1i ne
24 epos 0<e
25 21 24 gt0ne0ii e0
26 25 a1i ne0
27 17 23 26 divcld nne
28 27 11 expcld nnen
29 28 adantl φnnen
30 20 29 mulcld φn2πnnen
31 2 fvmpt2 n02πnnenSn=2πnnen
32 12 30 31 syl2anc φnSn=2πnnen
33 32 oveq2d φnn!Sn=n!2πnnen
34 15 sqrtcld φnπ
35 2cnd n2
36 35 17 mulcld n2n
37 36 sqrtcld n2n
38 37 adantl φn2n
39 34 38 29 mulassd φnπ2nnen=π2nnen
40 nfmpt1 _nnAn4Dn2
41 7 40 nfcxfr _nF
42 nfmpt1 _nnn2n2n+1
43 8 42 nfcxfr _nH
44 nfmpt1 _nn24nn!42n!22n+1
45 6 44 nfcxfr _nV
46 nnuz =1
47 1zzd φ1
48 nfmpt1 _nnn!2nnen
49 3 48 nfcxfr _nA
50 nfmpt1 _nnA2n
51 4 50 nfcxfr _nD
52 faccl n0n!
53 11 52 syl nn!
54 53 nnrpd nn!+
55 2rp 2+
56 55 a1i n2+
57 nnrp nn+
58 56 57 rpmulcld n2n+
59 58 rpsqrtcld n2n+
60 epr e+
61 60 a1i ne+
62 57 61 rpdivcld nne+
63 nnz nn
64 62 63 rpexpcld nnen+
65 59 64 rpmulcld n2nnen+
66 54 65 rpdivcld nn!2nnen+
67 3 66 fmpti A:+
68 67 a1i φA:+
69 eqid nAn4=nAn4
70 eqid nDn2=nDn2
71 67 a1i nA:+
72 2nn 2
73 72 a1i n2
74 id nn
75 73 74 nnmulcld n2n
76 71 75 ffvelcdmd nA2n+
77 4 fvmpt2 nA2n+Dn=A2n
78 76 77 mpdan nDn=A2n
79 78 76 eqeltrd nDn+
80 79 adantl φnDn+
81 1 49 51 4 68 7 69 70 80 9 10 stirlinglem8 φFC2
82 nnex V
83 82 mptex n24nn!42n!22n+1V
84 6 83 eqeltri VV
85 84 a1i φVV
86 eqid n112n+1=n112n+1
87 eqid n12n+1=n12n+1
88 eqid n1n=n1n
89 8 86 87 88 stirlinglem1 H12
90 89 a1i φH12
91 53 nncnd nn!
92 37 28 mulcld n2nnen
93 58 sqrtgt0d n0<2n
94 93 gt0ne0d n2n0
95 nnne0 nn0
96 17 23 95 26 divne0d nne0
97 27 96 63 expne0d nnen0
98 37 28 94 97 mulne0d n2nnen0
99 91 92 98 divcld nn!2nnen
100 3 fvmpt2 nn!2nnenAn=n!2nnen
101 99 100 mpdan nAn=n!2nnen
102 101 99 eqeltrd nAn
103 4nn0 40
104 103 a1i n40
105 102 104 expcld nAn4
106 79 rpcnd nDn
107 106 sqcld nDn2
108 79 rpne0d nDn0
109 2z 2
110 109 a1i n2
111 106 108 110 expne0d nDn20
112 105 107 111 divcld nAn4Dn2
113 7 fvmpt2 nAn4Dn2Fn=An4Dn2
114 112 113 mpdan nFn=An4Dn2
115 114 112 eqeltrd nFn
116 115 adantl φnFn
117 17 sqcld nn2
118 1cnd n1
119 36 118 addcld n2n+1
120 17 119 mulcld nn2n+1
121 75 nnred n2n
122 1red n1
123 75 nngt0d n0<2n
124 0lt1 0<1
125 124 a1i n0<1
126 121 122 123 125 addgt0d n0<2n+1
127 126 gt0ne0d n2n+10
128 17 119 95 127 mulne0d nn2n+10
129 117 120 128 divcld nn2n2n+1
130 8 fvmpt2 nn2n2n+1Hn=n2n2n+1
131 129 130 mpdan nHn=n2n2n+1
132 131 129 eqeltrd nHn
133 132 adantl φnHn
134 112 129 mulcld nAn4Dn2n2n2n+1
135 3 4 5 6 stirlinglem3 V=nAn4Dn2n2n2n+1
136 135 fvmpt2 nAn4Dn2n2n2n+1Vn=An4Dn2n2n2n+1
137 134 136 mpdan nVn=An4Dn2n2n2n+1
138 114 131 oveq12d nFnHn=An4Dn2n2n2n+1
139 137 138 eqtr4d nVn=FnHn
140 139 adantl φnVn=FnHn
141 1 41 43 45 46 47 81 85 90 116 133 140 climmulf φVC212
142 6 wallispi2 Vπ2
143 climuni VC212Vπ2C212=π2
144 141 142 143 sylancl φC212=π2
145 144 oveq1d φC21212=π212
146 9 rpcnd φC
147 146 sqcld φC2
148 1cnd φ1
149 148 halfcld φ12
150 2cnd φ2
151 2pos 0<2
152 151 a1i φ0<2
153 152 gt0ne0d φ20
154 150 153 recne0d φ120
155 147 149 154 divcan4d φC21212=C2
156 14 a1i φπ
157 124 a1i φ0<1
158 157 gt0ne0d φ10
159 156 148 150 158 153 divcan7d φπ212=π1
160 156 div1d φπ1=π
161 159 160 eqtrd φπ212=π
162 145 155 161 3eqtr3d φC2=π
163 162 fveq2d φC2=π
164 9 rprege0d φC0C
165 sqrtsq C0CC2=C
166 164 165 syl φC2=C
167 163 166 eqtr3d φπ=C
168 167 adantr φnπ=C
169 168 oveq1d φnπ2nnen=C2nnen
170 146 adantr φnC
171 92 adantl φn2nnen
172 170 171 mulcomd φnC2nnen=2nnenC
173 39 169 172 3eqtrd φnπ2nnen=2nnenC
174 173 oveq2d φnn!π2nnen=n!2nnenC
175 2re 2
176 175 a1i φn2
177 pire π
178 177 a1i φnπ
179 176 178 remulcld φn2π
180 0le2 02
181 180 a1i φn02
182 0re 0
183 pipos 0<π
184 182 177 183 ltleii 0π
185 184 a1i φn0π
186 176 178 181 185 mulge0d φn02π
187 12 nn0red φnn
188 12 nn0ge0d φn0n
189 179 186 187 188 sqrtmuld φn2πn=2πn
190 176 181 178 185 sqrtmuld φn2π=2π
191 190 oveq1d φn2πn=2πn
192 13 sqrtcld φn2
193 18 sqrtcld φnn
194 192 34 193 mulassd φn2πn=2πn
195 192 34 193 mul12d φn2πn=π2n
196 176 181 187 188 sqrtmuld φn2n=2n
197 196 eqcomd φn2n=2n
198 197 oveq2d φnπ2n=π2n
199 195 198 eqtrd φn2πn=π2n
200 191 194 199 3eqtrd φn2πn=π2n
201 189 200 eqtrd φn2πn=π2n
202 201 oveq1d φn2πnnen=π2nnen
203 202 oveq2d φnn!2πnnen=n!π2nnen
204 91 adantl φnn!
205 94 adantl φn2n0
206 22 a1i φne
207 25 a1i φne0
208 18 206 207 divcld φnne
209 95 adantl φnn0
210 18 206 209 207 divne0d φnne0
211 63 adantl φnn
212 208 210 211 expne0d φnnen0
213 38 29 205 212 mulne0d φn2nnen0
214 9 rpne0d φC0
215 214 adantr φnC0
216 204 171 170 213 215 divdiv1d φnn!2nnenC=n!2nnenC
217 174 203 216 3eqtr4d φnn!2πnnen=n!2nnenC
218 99 ancli nnn!2nnen
219 218 adantl φnnn!2nnen
220 219 100 syl φnAn=n!2nnen
221 220 eqcomd φnn!2nnen=An
222 221 oveq1d φnn!2nnenC=AnC
223 33 217 222 3eqtrd φnn!Sn=AnC
224 1 223 mpteq2da φnn!Sn=nAnC
225 102 adantl φnAn
226 225 170 215 divrec2d φnAnC=1CAn
227 1 226 mpteq2da φnAnC=n1CAn
228 146 214 reccld φ1C
229 82 mptex n1CAnV
230 229 a1i φn1CAnV
231 3 a1i kA=nn!2nnen
232 simpr kn=kn=k
233 232 fveq2d kn=kn!=k!
234 232 oveq2d kn=k2n=2k
235 234 fveq2d kn=k2n=2k
236 232 oveq1d kn=kne=ke
237 236 232 oveq12d kn=knen=kek
238 235 237 oveq12d kn=k2nnen=2kkek
239 233 238 oveq12d kn=kn!2nnen=k!2kkek
240 id kk
241 nnnn0 kk0
242 faccl k0k!
243 nncn k!k!
244 241 242 243 3syl kk!
245 2cnd k2
246 nncn kk
247 245 246 mulcld k2k
248 247 sqrtcld k2k
249 22 a1i ke
250 25 a1i ke0
251 246 249 250 divcld kke
252 251 241 expcld kkek
253 248 252 mulcld k2kkek
254 55 a1i k2+
255 nnrp kk+
256 254 255 rpmulcld k2k+
257 256 sqrtgt0d k0<2k
258 257 gt0ne0d k2k0
259 nnne0 kk0
260 246 249 259 250 divne0d kke0
261 nnz kk
262 251 260 261 expne0d kkek0
263 248 252 258 262 mulne0d k2kkek0
264 244 253 263 divcld kk!2kkek
265 231 239 240 264 fvmptd kAk=k!2kkek
266 265 264 eqeltrd kAk
267 266 adantl φkAk
268 nfcv _k1CAn
269 nfcv _n1
270 nfcv _n÷
271 nfcv _nC
272 269 270 271 nfov _n1C
273 nfcv _n×
274 nfcv _nk
275 49 274 nffv _nAk
276 272 273 275 nfov _n1CAk
277 fveq2 n=kAn=Ak
278 277 oveq2d n=k1CAn=1CAk
279 268 276 278 cbvmpt n1CAn=k1CAk
280 279 a1i φkn1CAn=k1CAk
281 280 fveq1d φkn1CAnk=k1CAkk
282 simpr φkk
283 146 adantr φkC
284 214 adantr φkC0
285 283 284 reccld φk1C
286 285 267 mulcld φk1CAk
287 eqid k1CAk=k1CAk
288 287 fvmpt2 k1CAkk1CAkk=1CAk
289 282 286 288 syl2anc φkk1CAkk=1CAk
290 281 289 eqtrd φkn1CAnk=1CAk
291 46 47 10 228 230 267 290 climmulc2 φn1CAn1CC
292 146 214 recid2d φ1CC=1
293 291 292 breqtrd φn1CAn1
294 227 293 eqbrtrd φnAnC1
295 224 294 eqbrtrd φnn!Sn1