Metamath Proof Explorer


Theorem stoweidlem11

Description: This lemma is used to prove that there is a function g as in the proof of BrosowskiDeutsh p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem11.1 φ N
stoweidlem11.2 φ t T
stoweidlem11.3 φ j 1 N
stoweidlem11.4 φ i 0 N X i : T
stoweidlem11.5 φ i 0 N X i t 1
stoweidlem11.6 φ i j N X i t < E N
stoweidlem11.7 φ E +
stoweidlem11.8 φ E < 1 3
Assertion stoweidlem11 φ t T i = 0 N E X i t t < j + 1 3 E

Proof

Step Hyp Ref Expression
1 stoweidlem11.1 φ N
2 stoweidlem11.2 φ t T
3 stoweidlem11.3 φ j 1 N
4 stoweidlem11.4 φ i 0 N X i : T
5 stoweidlem11.5 φ i 0 N X i t 1
6 stoweidlem11.6 φ i j N X i t < E N
7 stoweidlem11.7 φ E +
8 stoweidlem11.8 φ E < 1 3
9 sumex i = 0 N E X i t V
10 eqid t T i = 0 N E X i t = t T i = 0 N E X i t
11 10 fvmpt2 t T i = 0 N E X i t V t T i = 0 N E X i t t = i = 0 N E X i t
12 2 9 11 sylancl φ t T i = 0 N E X i t t = i = 0 N E X i t
13 fzfid φ 0 N Fin
14 7 rpred φ E
15 14 adantr φ i 0 N E
16 2 adantr φ i 0 N t T
17 4 16 ffvelrnd φ i 0 N X i t
18 15 17 remulcld φ i 0 N E X i t
19 13 18 fsumrecl φ i = 0 N E X i t
20 3 elfzelzd φ j
21 20 zred φ j
22 14 21 remulcld φ E j
23 1 nnred φ N
24 23 21 resubcld φ N j
25 1red φ 1
26 24 25 readdcld φ N - j + 1
27 14 1 nndivred φ E N
28 14 27 remulcld φ E E N
29 26 28 remulcld φ N - j + 1 E E N
30 22 29 readdcld φ E j + N - j + 1 E E N
31 3re 3
32 31 a1i φ 3
33 3ne0 3 0
34 33 a1i φ 3 0
35 32 34 rereccld φ 1 3
36 21 35 readdcld φ j + 1 3
37 36 14 remulcld φ j + 1 3 E
38 fzfid φ 0 j 1 Fin
39 14 adantr φ i 0 j 1 E
40 elfzelz j 1 N j
41 peano2zm j j 1
42 3 40 41 3syl φ j 1
43 1 nnzd φ N
44 21 25 resubcld φ j 1
45 21 lem1d φ j 1 j
46 elfzuz3 j 1 N N j
47 eluzle N j j N
48 3 46 47 3syl φ j N
49 44 21 23 45 48 letrd φ j 1 N
50 eluz2 N j 1 j 1 N j 1 N
51 42 43 49 50 syl3anbrc φ N j 1
52 fzss2 N j 1 0 j 1 0 N
53 51 52 syl φ 0 j 1 0 N
54 53 sselda φ i 0 j 1 i 0 N
55 54 17 syldan φ i 0 j 1 X i t
56 39 55 remulcld φ i 0 j 1 E X i t
57 38 56 fsumrecl φ i = 0 j 1 E X i t
58 57 29 readdcld φ i = 0 j 1 E X i t + N - j + 1 E E N
59 21 ltm1d φ j 1 < j
60 fzdisj j 1 < j 0 j 1 j N =
61 59 60 syl φ 0 j 1 j N =
62 fzssp1 0 N 1 0 N - 1 + 1
63 1 nncnd φ N
64 1cnd φ 1
65 63 64 npcand φ N - 1 + 1 = N
66 65 oveq2d φ 0 N - 1 + 1 = 0 N
67 62 66 sseqtrid φ 0 N 1 0 N
68 1zzd φ 1
69 fzsubel 1 N j 1 j 1 N j 1 1 1 N 1
70 68 43 20 68 69 syl22anc φ j 1 N j 1 1 1 N 1
71 3 70 mpbid φ j 1 1 1 N 1
72 1m1e0 1 1 = 0
73 72 oveq1i 1 1 N 1 = 0 N 1
74 71 73 eleqtrdi φ j 1 0 N 1
75 67 74 sseldd φ j 1 0 N
76 fzsplit j 1 0 N 0 N = 0 j 1 j - 1 + 1 N
77 75 76 syl φ 0 N = 0 j 1 j - 1 + 1 N
78 20 zcnd φ j
79 78 64 npcand φ j - 1 + 1 = j
80 79 oveq1d φ j - 1 + 1 N = j N
81 80 uneq2d φ 0 j 1 j - 1 + 1 N = 0 j 1 j N
82 77 81 eqtrd φ 0 N = 0 j 1 j N
83 7 rpcnd φ E
84 83 adantr φ i 0 N E
85 17 recnd φ i 0 N X i t
86 84 85 mulcld φ i 0 N E X i t
87 61 82 13 86 fsumsplit φ i = 0 N E X i t = i = 0 j 1 E X i t + i = j N E X i t
88 fzfid φ j N Fin
89 14 adantr φ i j N E
90 0zd φ 0
91 0red φ 0
92 0le1 0 1
93 92 a1i φ 0 1
94 elfzuz j 1 N j 1
95 3 94 syl φ j 1
96 eluz2 j 1 1 j 1 j
97 95 96 sylib φ 1 j 1 j
98 97 simp3d φ 1 j
99 91 25 21 93 98 letrd φ 0 j
100 eluz2 j 0 0 j 0 j
101 90 20 99 100 syl3anbrc φ j 0
102 fzss1 j 0 j N 0 N
103 101 102 syl φ j N 0 N
104 103 sselda φ i j N i 0 N
105 104 4 syldan φ i j N X i : T
106 2 adantr φ i j N t T
107 105 106 ffvelrnd φ i j N X i t
108 89 107 remulcld φ i j N E X i t
109 88 108 fsumrecl φ i = j N E X i t
110 eluzfz2 N j N j N
111 ne0i N j N j N
112 3 46 110 111 4syl φ j N
113 1 adantr φ i j N N
114 89 113 nndivred φ i j N E N
115 89 114 remulcld φ i j N E E N
116 7 rpgt0d φ 0 < E
117 116 adantr φ i j N 0 < E
118 ltmul2 X i t E N E 0 < E X i t < E N E X i t < E E N
119 107 114 89 117 118 syl112anc φ i j N X i t < E N E X i t < E E N
120 6 119 mpbid φ i j N E X i t < E E N
121 88 112 108 115 120 fsumlt φ i = j N E X i t < i = j N E E N
122 1 nnne0d φ N 0
123 83 63 122 divcld φ E N
124 83 123 mulcld φ E E N
125 fsumconst j N Fin E E N i = j N E E N = j N E E N
126 88 124 125 syl2anc φ i = j N E E N = j N E E N
127 hashfz N j j N = N - j + 1
128 3 46 127 3syl φ j N = N - j + 1
129 128 oveq1d φ j N E E N = N - j + 1 E E N
130 126 129 eqtrd φ i = j N E E N = N - j + 1 E E N
131 121 130 breqtrd φ i = j N E X i t < N - j + 1 E E N
132 109 29 57 131 ltadd2dd φ i = 0 j 1 E X i t + i = j N E X i t < i = 0 j 1 E X i t + N - j + 1 E E N
133 87 132 eqbrtrd φ i = 0 N E X i t < i = 0 j 1 E X i t + N - j + 1 E E N
134 54 5 syldan φ i 0 j 1 X i t 1
135 1red φ i 0 j 1 1
136 116 adantr φ i 0 j 1 0 < E
137 lemul2 X i t 1 E 0 < E X i t 1 E X i t E 1
138 55 135 39 136 137 syl112anc φ i 0 j 1 X i t 1 E X i t E 1
139 134 138 mpbid φ i 0 j 1 E X i t E 1
140 83 mulid1d φ E 1 = E
141 140 adantr φ i 0 j 1 E 1 = E
142 139 141 breqtrd φ i 0 j 1 E X i t E
143 38 56 39 142 fsumle φ i = 0 j 1 E X i t i = 0 j 1 E
144 fsumconst 0 j 1 Fin E i = 0 j 1 E = 0 j 1 E
145 38 83 144 syl2anc φ i = 0 j 1 E = 0 j 1 E
146 0z 0
147 1e0p1 1 = 0 + 1
148 147 fveq2i 1 = 0 + 1
149 95 148 eleqtrdi φ j 0 + 1
150 eluzp1m1 0 j 0 + 1 j 1 0
151 146 149 150 sylancr φ j 1 0
152 hashfz j 1 0 0 j 1 = j 1 - 0 + 1
153 151 152 syl φ 0 j 1 = j 1 - 0 + 1
154 78 64 subcld φ j 1
155 154 subid1d φ j - 1 - 0 = j 1
156 155 oveq1d φ j 1 - 0 + 1 = j - 1 + 1
157 153 156 79 3eqtrd φ 0 j 1 = j
158 157 oveq1d φ 0 j 1 E = j E
159 78 83 mulcomd φ j E = E j
160 145 158 159 3eqtrd φ i = 0 j 1 E = E j
161 143 160 breqtrd φ i = 0 j 1 E X i t E j
162 57 22 29 161 leadd1dd φ i = 0 j 1 E X i t + N - j + 1 E E N E j + N - j + 1 E E N
163 19 58 30 133 162 ltletrd φ i = 0 N E X i t < E j + N - j + 1 E E N
164 14 14 remulcld φ E E
165 22 164 readdcld φ E j + E E
166 63 78 subcld φ N j
167 166 64 addcld φ N - j + 1
168 83 167 123 mul12d φ E N - j + 1 E N = N - j + 1 E E N
169 168 oveq2d φ E j + E N - j + 1 E N = E j + N - j + 1 E E N
170 26 27 remulcld φ N - j + 1 E N
171 14 170 remulcld φ E N - j + 1 E N
172 167 83 63 122 div12d φ N - j + 1 E N = E N - j + 1 N
173 25 21 resubcld φ 1 j
174 elfzle1 j 1 N 1 j
175 3 174 syl φ 1 j
176 25 21 suble0d φ 1 j 0 1 j
177 175 176 mpbird φ 1 j 0
178 173 91 23 177 leadd2dd φ N + 1 - j N + 0
179 63 64 78 addsub12d φ N + 1 - j = 1 + N - j
180 64 166 addcomd φ 1 + N - j = N - j + 1
181 179 180 eqtrd φ N + 1 - j = N - j + 1
182 63 addid1d φ N + 0 = N
183 178 181 182 3brtr3d φ N - j + 1 N
184 1 nngt0d φ 0 < N
185 lediv1 N - j + 1 N N 0 < N N - j + 1 N N - j + 1 N N N
186 26 23 23 184 185 syl112anc φ N - j + 1 N N - j + 1 N N N
187 183 186 mpbid φ N - j + 1 N N N
188 63 122 dividd φ N N = 1
189 187 188 breqtrd φ N - j + 1 N 1
190 26 1 nndivred φ N - j + 1 N
191 190 25 7 lemul2d φ N - j + 1 N 1 E N - j + 1 N E 1
192 189 191 mpbid φ E N - j + 1 N E 1
193 192 140 breqtrd φ E N - j + 1 N E
194 172 193 eqbrtrd φ N - j + 1 E N E
195 170 14 7 lemul2d φ N - j + 1 E N E E N - j + 1 E N E E
196 194 195 mpbid φ E N - j + 1 E N E E
197 171 164 22 196 leadd2dd φ E j + E N - j + 1 E N E j + E E
198 169 197 eqbrtrrd φ E j + N - j + 1 E E N E j + E E
199 83 78 mulcomd φ E j = j E
200 199 oveq1d φ E j + E E = j E + E E
201 78 83 83 adddird φ j + E E = j E + E E
202 200 201 eqtr4d φ E j + E E = j + E E
203 21 14 readdcld φ j + E
204 14 35 21 8 ltadd2dd φ j + E < j + 1 3
205 203 36 7 204 ltmul1dd φ j + E E < j + 1 3 E
206 202 205 eqbrtrd φ E j + E E < j + 1 3 E
207 30 165 37 198 206 lelttrd φ E j + N - j + 1 E E N < j + 1 3 E
208 19 30 37 163 207 lttrd φ i = 0 N E X i t < j + 1 3 E
209 12 208 eqbrtrd φ t T i = 0 N E X i t t < j + 1 3 E