Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem11.1 |
|
2 |
|
stoweidlem11.2 |
|
3 |
|
stoweidlem11.3 |
|
4 |
|
stoweidlem11.4 |
|
5 |
|
stoweidlem11.5 |
|
6 |
|
stoweidlem11.6 |
|
7 |
|
stoweidlem11.7 |
|
8 |
|
stoweidlem11.8 |
|
9 |
|
sumex |
|
10 |
|
eqid |
|
11 |
10
|
fvmpt2 |
|
12 |
2 9 11
|
sylancl |
|
13 |
|
fzfid |
|
14 |
7
|
rpred |
|
15 |
14
|
adantr |
|
16 |
2
|
adantr |
|
17 |
4 16
|
ffvelrnd |
|
18 |
15 17
|
remulcld |
|
19 |
13 18
|
fsumrecl |
|
20 |
3
|
elfzelzd |
|
21 |
20
|
zred |
|
22 |
14 21
|
remulcld |
|
23 |
1
|
nnred |
|
24 |
23 21
|
resubcld |
|
25 |
|
1red |
|
26 |
24 25
|
readdcld |
|
27 |
14 1
|
nndivred |
|
28 |
14 27
|
remulcld |
|
29 |
26 28
|
remulcld |
|
30 |
22 29
|
readdcld |
|
31 |
|
3re |
|
32 |
31
|
a1i |
|
33 |
|
3ne0 |
|
34 |
33
|
a1i |
|
35 |
32 34
|
rereccld |
|
36 |
21 35
|
readdcld |
|
37 |
36 14
|
remulcld |
|
38 |
|
fzfid |
|
39 |
14
|
adantr |
|
40 |
|
elfzelz |
|
41 |
|
peano2zm |
|
42 |
3 40 41
|
3syl |
|
43 |
1
|
nnzd |
|
44 |
21 25
|
resubcld |
|
45 |
21
|
lem1d |
|
46 |
|
elfzuz3 |
|
47 |
|
eluzle |
|
48 |
3 46 47
|
3syl |
|
49 |
44 21 23 45 48
|
letrd |
|
50 |
|
eluz2 |
|
51 |
42 43 49 50
|
syl3anbrc |
|
52 |
|
fzss2 |
|
53 |
51 52
|
syl |
|
54 |
53
|
sselda |
|
55 |
54 17
|
syldan |
|
56 |
39 55
|
remulcld |
|
57 |
38 56
|
fsumrecl |
|
58 |
57 29
|
readdcld |
|
59 |
21
|
ltm1d |
|
60 |
|
fzdisj |
|
61 |
59 60
|
syl |
|
62 |
|
fzssp1 |
|
63 |
1
|
nncnd |
|
64 |
|
1cnd |
|
65 |
63 64
|
npcand |
|
66 |
65
|
oveq2d |
|
67 |
62 66
|
sseqtrid |
|
68 |
|
1zzd |
|
69 |
|
fzsubel |
|
70 |
68 43 20 68 69
|
syl22anc |
|
71 |
3 70
|
mpbid |
|
72 |
|
1m1e0 |
|
73 |
72
|
oveq1i |
|
74 |
71 73
|
eleqtrdi |
|
75 |
67 74
|
sseldd |
|
76 |
|
fzsplit |
|
77 |
75 76
|
syl |
|
78 |
20
|
zcnd |
|
79 |
78 64
|
npcand |
|
80 |
79
|
oveq1d |
|
81 |
80
|
uneq2d |
|
82 |
77 81
|
eqtrd |
|
83 |
7
|
rpcnd |
|
84 |
83
|
adantr |
|
85 |
17
|
recnd |
|
86 |
84 85
|
mulcld |
|
87 |
61 82 13 86
|
fsumsplit |
|
88 |
|
fzfid |
|
89 |
14
|
adantr |
|
90 |
|
0zd |
|
91 |
|
0red |
|
92 |
|
0le1 |
|
93 |
92
|
a1i |
|
94 |
|
elfzuz |
|
95 |
3 94
|
syl |
|
96 |
|
eluz2 |
|
97 |
95 96
|
sylib |
|
98 |
97
|
simp3d |
|
99 |
91 25 21 93 98
|
letrd |
|
100 |
|
eluz2 |
|
101 |
90 20 99 100
|
syl3anbrc |
|
102 |
|
fzss1 |
|
103 |
101 102
|
syl |
|
104 |
103
|
sselda |
|
105 |
104 4
|
syldan |
|
106 |
2
|
adantr |
|
107 |
105 106
|
ffvelrnd |
|
108 |
89 107
|
remulcld |
|
109 |
88 108
|
fsumrecl |
|
110 |
|
eluzfz2 |
|
111 |
|
ne0i |
|
112 |
3 46 110 111
|
4syl |
|
113 |
1
|
adantr |
|
114 |
89 113
|
nndivred |
|
115 |
89 114
|
remulcld |
|
116 |
7
|
rpgt0d |
|
117 |
116
|
adantr |
|
118 |
|
ltmul2 |
|
119 |
107 114 89 117 118
|
syl112anc |
|
120 |
6 119
|
mpbid |
|
121 |
88 112 108 115 120
|
fsumlt |
|
122 |
1
|
nnne0d |
|
123 |
83 63 122
|
divcld |
|
124 |
83 123
|
mulcld |
|
125 |
|
fsumconst |
|
126 |
88 124 125
|
syl2anc |
|
127 |
|
hashfz |
|
128 |
3 46 127
|
3syl |
|
129 |
128
|
oveq1d |
|
130 |
126 129
|
eqtrd |
|
131 |
121 130
|
breqtrd |
|
132 |
109 29 57 131
|
ltadd2dd |
|
133 |
87 132
|
eqbrtrd |
|
134 |
54 5
|
syldan |
|
135 |
|
1red |
|
136 |
116
|
adantr |
|
137 |
|
lemul2 |
|
138 |
55 135 39 136 137
|
syl112anc |
|
139 |
134 138
|
mpbid |
|
140 |
83
|
mulid1d |
|
141 |
140
|
adantr |
|
142 |
139 141
|
breqtrd |
|
143 |
38 56 39 142
|
fsumle |
|
144 |
|
fsumconst |
|
145 |
38 83 144
|
syl2anc |
|
146 |
|
0z |
|
147 |
|
1e0p1 |
|
148 |
147
|
fveq2i |
|
149 |
95 148
|
eleqtrdi |
|
150 |
|
eluzp1m1 |
|
151 |
146 149 150
|
sylancr |
|
152 |
|
hashfz |
|
153 |
151 152
|
syl |
|
154 |
78 64
|
subcld |
|
155 |
154
|
subid1d |
|
156 |
155
|
oveq1d |
|
157 |
153 156 79
|
3eqtrd |
|
158 |
157
|
oveq1d |
|
159 |
78 83
|
mulcomd |
|
160 |
145 158 159
|
3eqtrd |
|
161 |
143 160
|
breqtrd |
|
162 |
57 22 29 161
|
leadd1dd |
|
163 |
19 58 30 133 162
|
ltletrd |
|
164 |
14 14
|
remulcld |
|
165 |
22 164
|
readdcld |
|
166 |
63 78
|
subcld |
|
167 |
166 64
|
addcld |
|
168 |
83 167 123
|
mul12d |
|
169 |
168
|
oveq2d |
|
170 |
26 27
|
remulcld |
|
171 |
14 170
|
remulcld |
|
172 |
167 83 63 122
|
div12d |
|
173 |
25 21
|
resubcld |
|
174 |
|
elfzle1 |
|
175 |
3 174
|
syl |
|
176 |
25 21
|
suble0d |
|
177 |
175 176
|
mpbird |
|
178 |
173 91 23 177
|
leadd2dd |
|
179 |
63 64 78
|
addsub12d |
|
180 |
64 166
|
addcomd |
|
181 |
179 180
|
eqtrd |
|
182 |
63
|
addid1d |
|
183 |
178 181 182
|
3brtr3d |
|
184 |
1
|
nngt0d |
|
185 |
|
lediv1 |
|
186 |
26 23 23 184 185
|
syl112anc |
|
187 |
183 186
|
mpbid |
|
188 |
63 122
|
dividd |
|
189 |
187 188
|
breqtrd |
|
190 |
26 1
|
nndivred |
|
191 |
190 25 7
|
lemul2d |
|
192 |
189 191
|
mpbid |
|
193 |
192 140
|
breqtrd |
|
194 |
172 193
|
eqbrtrd |
|
195 |
170 14 7
|
lemul2d |
|
196 |
194 195
|
mpbid |
|
197 |
171 164 22 196
|
leadd2dd |
|
198 |
169 197
|
eqbrtrrd |
|
199 |
83 78
|
mulcomd |
|
200 |
199
|
oveq1d |
|
201 |
78 83 83
|
adddird |
|
202 |
200 201
|
eqtr4d |
|
203 |
21 14
|
readdcld |
|
204 |
14 35 21 8
|
ltadd2dd |
|
205 |
203 36 7 204
|
ltmul1dd |
|
206 |
202 205
|
eqbrtrd |
|
207 |
30 165 37 198 206
|
lelttrd |
|
208 |
19 30 37 163 207
|
lttrd |
|
209 |
12 208
|
eqbrtrd |
|