| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem11.1 |
|
| 2 |
|
stoweidlem11.2 |
|
| 3 |
|
stoweidlem11.3 |
|
| 4 |
|
stoweidlem11.4 |
|
| 5 |
|
stoweidlem11.5 |
|
| 6 |
|
stoweidlem11.6 |
|
| 7 |
|
stoweidlem11.7 |
|
| 8 |
|
stoweidlem11.8 |
|
| 9 |
|
sumex |
|
| 10 |
|
eqid |
|
| 11 |
10
|
fvmpt2 |
|
| 12 |
2 9 11
|
sylancl |
|
| 13 |
|
fzfid |
|
| 14 |
7
|
rpred |
|
| 15 |
14
|
adantr |
|
| 16 |
2
|
adantr |
|
| 17 |
4 16
|
ffvelcdmd |
|
| 18 |
15 17
|
remulcld |
|
| 19 |
13 18
|
fsumrecl |
|
| 20 |
3
|
elfzelzd |
|
| 21 |
20
|
zred |
|
| 22 |
14 21
|
remulcld |
|
| 23 |
1
|
nnred |
|
| 24 |
23 21
|
resubcld |
|
| 25 |
|
1red |
|
| 26 |
24 25
|
readdcld |
|
| 27 |
14 1
|
nndivred |
|
| 28 |
14 27
|
remulcld |
|
| 29 |
26 28
|
remulcld |
|
| 30 |
22 29
|
readdcld |
|
| 31 |
|
3re |
|
| 32 |
31
|
a1i |
|
| 33 |
|
3ne0 |
|
| 34 |
33
|
a1i |
|
| 35 |
32 34
|
rereccld |
|
| 36 |
21 35
|
readdcld |
|
| 37 |
36 14
|
remulcld |
|
| 38 |
|
fzfid |
|
| 39 |
14
|
adantr |
|
| 40 |
|
elfzelz |
|
| 41 |
|
peano2zm |
|
| 42 |
3 40 41
|
3syl |
|
| 43 |
1
|
nnzd |
|
| 44 |
21 25
|
resubcld |
|
| 45 |
21
|
lem1d |
|
| 46 |
|
elfzuz3 |
|
| 47 |
|
eluzle |
|
| 48 |
3 46 47
|
3syl |
|
| 49 |
44 21 23 45 48
|
letrd |
|
| 50 |
|
eluz2 |
|
| 51 |
42 43 49 50
|
syl3anbrc |
|
| 52 |
|
fzss2 |
|
| 53 |
51 52
|
syl |
|
| 54 |
53
|
sselda |
|
| 55 |
54 17
|
syldan |
|
| 56 |
39 55
|
remulcld |
|
| 57 |
38 56
|
fsumrecl |
|
| 58 |
57 29
|
readdcld |
|
| 59 |
21
|
ltm1d |
|
| 60 |
|
fzdisj |
|
| 61 |
59 60
|
syl |
|
| 62 |
|
fzssp1 |
|
| 63 |
1
|
nncnd |
|
| 64 |
|
1cnd |
|
| 65 |
63 64
|
npcand |
|
| 66 |
65
|
oveq2d |
|
| 67 |
62 66
|
sseqtrid |
|
| 68 |
|
1zzd |
|
| 69 |
|
fzsubel |
|
| 70 |
68 43 20 68 69
|
syl22anc |
|
| 71 |
3 70
|
mpbid |
|
| 72 |
|
1m1e0 |
|
| 73 |
72
|
oveq1i |
|
| 74 |
71 73
|
eleqtrdi |
|
| 75 |
67 74
|
sseldd |
|
| 76 |
|
fzsplit |
|
| 77 |
75 76
|
syl |
|
| 78 |
20
|
zcnd |
|
| 79 |
78 64
|
npcand |
|
| 80 |
79
|
oveq1d |
|
| 81 |
80
|
uneq2d |
|
| 82 |
77 81
|
eqtrd |
|
| 83 |
7
|
rpcnd |
|
| 84 |
83
|
adantr |
|
| 85 |
17
|
recnd |
|
| 86 |
84 85
|
mulcld |
|
| 87 |
61 82 13 86
|
fsumsplit |
|
| 88 |
|
fzfid |
|
| 89 |
14
|
adantr |
|
| 90 |
|
0zd |
|
| 91 |
|
0red |
|
| 92 |
|
0le1 |
|
| 93 |
92
|
a1i |
|
| 94 |
|
elfzuz |
|
| 95 |
3 94
|
syl |
|
| 96 |
|
eluz2 |
|
| 97 |
95 96
|
sylib |
|
| 98 |
97
|
simp3d |
|
| 99 |
91 25 21 93 98
|
letrd |
|
| 100 |
|
eluz2 |
|
| 101 |
90 20 99 100
|
syl3anbrc |
|
| 102 |
|
fzss1 |
|
| 103 |
101 102
|
syl |
|
| 104 |
103
|
sselda |
|
| 105 |
104 4
|
syldan |
|
| 106 |
2
|
adantr |
|
| 107 |
105 106
|
ffvelcdmd |
|
| 108 |
89 107
|
remulcld |
|
| 109 |
88 108
|
fsumrecl |
|
| 110 |
|
eluzfz2 |
|
| 111 |
|
ne0i |
|
| 112 |
3 46 110 111
|
4syl |
|
| 113 |
1
|
adantr |
|
| 114 |
89 113
|
nndivred |
|
| 115 |
89 114
|
remulcld |
|
| 116 |
7
|
rpgt0d |
|
| 117 |
116
|
adantr |
|
| 118 |
|
ltmul2 |
|
| 119 |
107 114 89 117 118
|
syl112anc |
|
| 120 |
6 119
|
mpbid |
|
| 121 |
88 112 108 115 120
|
fsumlt |
|
| 122 |
1
|
nnne0d |
|
| 123 |
83 63 122
|
divcld |
|
| 124 |
83 123
|
mulcld |
|
| 125 |
|
fsumconst |
|
| 126 |
88 124 125
|
syl2anc |
|
| 127 |
|
hashfz |
|
| 128 |
3 46 127
|
3syl |
|
| 129 |
128
|
oveq1d |
|
| 130 |
126 129
|
eqtrd |
|
| 131 |
121 130
|
breqtrd |
|
| 132 |
109 29 57 131
|
ltadd2dd |
|
| 133 |
87 132
|
eqbrtrd |
|
| 134 |
54 5
|
syldan |
|
| 135 |
|
1red |
|
| 136 |
116
|
adantr |
|
| 137 |
|
lemul2 |
|
| 138 |
55 135 39 136 137
|
syl112anc |
|
| 139 |
134 138
|
mpbid |
|
| 140 |
83
|
mulridd |
|
| 141 |
140
|
adantr |
|
| 142 |
139 141
|
breqtrd |
|
| 143 |
38 56 39 142
|
fsumle |
|
| 144 |
|
fsumconst |
|
| 145 |
38 83 144
|
syl2anc |
|
| 146 |
|
0z |
|
| 147 |
|
1e0p1 |
|
| 148 |
147
|
fveq2i |
|
| 149 |
95 148
|
eleqtrdi |
|
| 150 |
|
eluzp1m1 |
|
| 151 |
146 149 150
|
sylancr |
|
| 152 |
|
hashfz |
|
| 153 |
151 152
|
syl |
|
| 154 |
78 64
|
subcld |
|
| 155 |
154
|
subid1d |
|
| 156 |
155
|
oveq1d |
|
| 157 |
153 156 79
|
3eqtrd |
|
| 158 |
157
|
oveq1d |
|
| 159 |
78 83
|
mulcomd |
|
| 160 |
145 158 159
|
3eqtrd |
|
| 161 |
143 160
|
breqtrd |
|
| 162 |
57 22 29 161
|
leadd1dd |
|
| 163 |
19 58 30 133 162
|
ltletrd |
|
| 164 |
14 14
|
remulcld |
|
| 165 |
22 164
|
readdcld |
|
| 166 |
63 78
|
subcld |
|
| 167 |
166 64
|
addcld |
|
| 168 |
83 167 123
|
mul12d |
|
| 169 |
168
|
oveq2d |
|
| 170 |
26 27
|
remulcld |
|
| 171 |
14 170
|
remulcld |
|
| 172 |
167 83 63 122
|
div12d |
|
| 173 |
25 21
|
resubcld |
|
| 174 |
|
elfzle1 |
|
| 175 |
3 174
|
syl |
|
| 176 |
25 21
|
suble0d |
|
| 177 |
175 176
|
mpbird |
|
| 178 |
173 91 23 177
|
leadd2dd |
|
| 179 |
63 64 78
|
addsub12d |
|
| 180 |
64 166
|
addcomd |
|
| 181 |
179 180
|
eqtrd |
|
| 182 |
63
|
addridd |
|
| 183 |
178 181 182
|
3brtr3d |
|
| 184 |
1
|
nngt0d |
|
| 185 |
|
lediv1 |
|
| 186 |
26 23 23 184 185
|
syl112anc |
|
| 187 |
183 186
|
mpbid |
|
| 188 |
63 122
|
dividd |
|
| 189 |
187 188
|
breqtrd |
|
| 190 |
26 1
|
nndivred |
|
| 191 |
190 25 7
|
lemul2d |
|
| 192 |
189 191
|
mpbid |
|
| 193 |
192 140
|
breqtrd |
|
| 194 |
172 193
|
eqbrtrd |
|
| 195 |
170 14 7
|
lemul2d |
|
| 196 |
194 195
|
mpbid |
|
| 197 |
171 164 22 196
|
leadd2dd |
|
| 198 |
169 197
|
eqbrtrrd |
|
| 199 |
83 78
|
mulcomd |
|
| 200 |
199
|
oveq1d |
|
| 201 |
78 83 83
|
adddird |
|
| 202 |
200 201
|
eqtr4d |
|
| 203 |
21 14
|
readdcld |
|
| 204 |
14 35 21 8
|
ltadd2dd |
|
| 205 |
203 36 7 204
|
ltmul1dd |
|
| 206 |
202 205
|
eqbrtrd |
|
| 207 |
30 165 37 198 206
|
lelttrd |
|
| 208 |
19 30 37 163 207
|
lttrd |
|
| 209 |
12 208
|
eqbrtrd |
|