Metamath Proof Explorer


Theorem txdis1cn

Description: A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses txdis1cn.x φXV
txdis1cn.j φJTopOnY
txdis1cn.k φKTop
txdis1cn.f φFFnX×Y
txdis1cn.1 φxXyYxFyJCnK
Assertion txdis1cn φF𝒫X×tJCnK

Proof

Step Hyp Ref Expression
1 txdis1cn.x φXV
2 txdis1cn.j φJTopOnY
3 txdis1cn.k φKTop
4 txdis1cn.f φFFnX×Y
5 txdis1cn.1 φxXyYxFyJCnK
6 2 adantr φxXJTopOnY
7 toptopon2 KTopKTopOnK
8 3 7 sylib φKTopOnK
9 8 adantr φxXKTopOnK
10 cnf2 JTopOnYKTopOnKyYxFyJCnKyYxFy:YK
11 6 9 5 10 syl3anc φxXyYxFy:YK
12 eqid yYxFy=yYxFy
13 12 fmpt yYxFyKyYxFy:YK
14 11 13 sylibr φxXyYxFyK
15 14 ralrimiva φxXyYxFyK
16 ffnov F:X×YKFFnX×YxXyYxFyK
17 4 15 16 sylanbrc φF:X×YK
18 cnvimass F-1udomF
19 4 adantr φuKFFnX×Y
20 19 fndmd φuKdomF=X×Y
21 18 20 sseqtrid φuKF-1uX×Y
22 relxp RelX×Y
23 relss F-1uX×YRelX×YRelF-1u
24 21 22 23 mpisyl φuKRelF-1u
25 elpreima FFnX×YxzF-1uxzX×YFxzu
26 19 25 syl φuKxzF-1uxzX×YFxzu
27 opelxp xzX×YxXzY
28 df-ov xFz=Fxz
29 28 eqcomi Fxz=xFz
30 29 eleq1i FxzuxFzu
31 27 30 anbi12i xzX×YFxzuxXzYxFzu
32 simprll φuKxXzYxFzuxX
33 snelpwi xXx𝒫X
34 32 33 syl φuKxXzYxFzux𝒫X
35 12 mptpreima yYxFy-1u=yY|xFyu
36 5 adantrr φxXzYyYxFyJCnK
37 36 ad2ant2r φuKxXzYxFzuyYxFyJCnK
38 simplr φuKxXzYxFzuuK
39 cnima yYxFyJCnKuKyYxFy-1uJ
40 37 38 39 syl2anc φuKxXzYxFzuyYxFy-1uJ
41 35 40 eqeltrrid φuKxXzYxFzuyY|xFyuJ
42 simprlr φuKxXzYxFzuzY
43 simprr φuKxXzYxFzuxFzu
44 vsnid xx
45 opelxp xzx×yY|xFyuxxzyY|xFyu
46 44 45 mpbiran xzx×yY|xFyuzyY|xFyu
47 oveq2 y=zxFy=xFz
48 47 eleq1d y=zxFyuxFzu
49 48 elrab zyY|xFyuzYxFzu
50 46 49 bitri xzx×yY|xFyuzYxFzu
51 42 43 50 sylanbrc φuKxXzYxFzuxzx×yY|xFyu
52 relxp Relx×yY|xFyu
53 52 a1i φuKxXzYxFzuRelx×yY|xFyu
54 opelxp nmx×yY|xFyunxmyY|xFyu
55 32 snssd φuKxXzYxFzuxX
56 55 sselda φuKxXzYxFzunxnX
57 56 adantrr φuKxXzYxFzunxmyY|xFyunX
58 elrabi myY|xFyumY
59 58 ad2antll φuKxXzYxFzunxmyY|xFyumY
60 57 59 opelxpd φuKxXzYxFzunxmyY|xFyunmX×Y
61 df-ov nFm=Fnm
62 elsni nxn=x
63 62 ad2antrl φuKxXzYxFzunxmyY|xFyun=x
64 63 oveq1d φuKxXzYxFzunxmyY|xFyunFm=xFm
65 61 64 eqtr3id φuKxXzYxFzunxmyY|xFyuFnm=xFm
66 oveq2 y=mxFy=xFm
67 66 eleq1d y=mxFyuxFmu
68 67 elrab myY|xFyumYxFmu
69 68 simprbi myY|xFyuxFmu
70 69 ad2antll φuKxXzYxFzunxmyY|xFyuxFmu
71 65 70 eqeltrd φuKxXzYxFzunxmyY|xFyuFnmu
72 elpreima FFnX×YnmF-1unmX×YFnmu
73 4 72 syl φnmF-1unmX×YFnmu
74 73 ad3antrrr φuKxXzYxFzunxmyY|xFyunmF-1unmX×YFnmu
75 60 71 74 mpbir2and φuKxXzYxFzunxmyY|xFyunmF-1u
76 75 ex φuKxXzYxFzunxmyY|xFyunmF-1u
77 54 76 biimtrid φuKxXzYxFzunmx×yY|xFyunmF-1u
78 53 77 relssdv φuKxXzYxFzux×yY|xFyuF-1u
79 xpeq1 a=xa×b=x×b
80 79 eleq2d a=xxza×bxzx×b
81 79 sseq1d a=xa×bF-1ux×bF-1u
82 80 81 anbi12d a=xxza×ba×bF-1uxzx×bx×bF-1u
83 xpeq2 b=yY|xFyux×b=x×yY|xFyu
84 83 eleq2d b=yY|xFyuxzx×bxzx×yY|xFyu
85 83 sseq1d b=yY|xFyux×bF-1ux×yY|xFyuF-1u
86 84 85 anbi12d b=yY|xFyuxzx×bx×bF-1uxzx×yY|xFyux×yY|xFyuF-1u
87 82 86 rspc2ev x𝒫XyY|xFyuJxzx×yY|xFyux×yY|xFyuF-1ua𝒫XbJxza×ba×bF-1u
88 34 41 51 78 87 syl112anc φuKxXzYxFzua𝒫XbJxza×ba×bF-1u
89 opex xzV
90 eleq1 v=xzva×bxza×b
91 90 anbi1d v=xzva×ba×bF-1uxza×ba×bF-1u
92 91 2rexbidv v=xza𝒫XbJva×ba×bF-1ua𝒫XbJxza×ba×bF-1u
93 89 92 elab xzv|a𝒫XbJva×ba×bF-1ua𝒫XbJxza×ba×bF-1u
94 88 93 sylibr φuKxXzYxFzuxzv|a𝒫XbJva×ba×bF-1u
95 94 ex φuKxXzYxFzuxzv|a𝒫XbJva×ba×bF-1u
96 31 95 biimtrid φuKxzX×YFxzuxzv|a𝒫XbJva×ba×bF-1u
97 26 96 sylbid φuKxzF-1uxzv|a𝒫XbJva×ba×bF-1u
98 24 97 relssdv φuKF-1uv|a𝒫XbJva×ba×bF-1u
99 ssabral F-1uv|a𝒫XbJva×ba×bF-1uvF-1ua𝒫XbJva×ba×bF-1u
100 98 99 sylib φuKvF-1ua𝒫XbJva×ba×bF-1u
101 distopon XV𝒫XTopOnX
102 1 101 syl φ𝒫XTopOnX
103 102 adantr φuK𝒫XTopOnX
104 2 adantr φuKJTopOnY
105 eltx 𝒫XTopOnXJTopOnYF-1u𝒫X×tJvF-1ua𝒫XbJva×ba×bF-1u
106 103 104 105 syl2anc φuKF-1u𝒫X×tJvF-1ua𝒫XbJva×ba×bF-1u
107 100 106 mpbird φuKF-1u𝒫X×tJ
108 107 ralrimiva φuKF-1u𝒫X×tJ
109 txtopon 𝒫XTopOnXJTopOnY𝒫X×tJTopOnX×Y
110 102 2 109 syl2anc φ𝒫X×tJTopOnX×Y
111 iscn 𝒫X×tJTopOnX×YKTopOnKF𝒫X×tJCnKF:X×YKuKF-1u𝒫X×tJ
112 110 8 111 syl2anc φF𝒫X×tJCnKF:X×YKuKF-1u𝒫X×tJ
113 17 108 112 mpbir2and φF𝒫X×tJCnK