| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
| 2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
| 3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
| 4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
| 5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
| 7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
| 8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
| 10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
eulerpartlemgv |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐺 ‘ 𝐴 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝐵 ) = ( ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ‘ 𝐵 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝐵 ) = ( ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ‘ 𝐵 ) ) |
| 14 |
|
nnex |
⊢ ℕ ∈ V |
| 15 |
|
imassrn |
⊢ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ⊆ ran 𝐹 |
| 16 |
4 5
|
oddpwdc |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ |
| 17 |
|
f1of |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ → 𝐹 : ( 𝐽 × ℕ0 ) ⟶ ℕ ) |
| 18 |
|
frn |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) ⟶ ℕ → ran 𝐹 ⊆ ℕ ) |
| 19 |
16 17 18
|
mp2b |
⊢ ran 𝐹 ⊆ ℕ |
| 20 |
15 19
|
sstri |
⊢ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ⊆ ℕ |
| 21 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
| 22 |
|
indfval |
⊢ ( ( ℕ ∈ V ∧ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ⊆ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ‘ 𝐵 ) = if ( 𝐵 ∈ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) , 1 , 0 ) ) |
| 23 |
14 20 21 22
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ) ‘ 𝐵 ) = if ( 𝐵 ∈ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) , 1 , 0 ) ) |
| 24 |
|
ffn |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) ⟶ ℕ → 𝐹 Fn ( 𝐽 × ℕ0 ) ) |
| 25 |
16 17 24
|
mp2b |
⊢ 𝐹 Fn ( 𝐽 × ℕ0 ) |
| 26 |
1 2 3 4 5 6 7 8 9 10
|
eulerpartlemmf |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ 𝐻 ) |
| 27 |
1 2 3 4 5 6 7
|
eulerpartlem1 |
⊢ 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
| 28 |
|
f1of |
⊢ ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) → 𝑀 : 𝐻 ⟶ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 29 |
27 28
|
ax-mp |
⊢ 𝑀 : 𝐻 ⟶ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
| 30 |
29
|
ffvelcdmi |
⊢ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ∈ 𝐻 → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 31 |
26 30
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 32 |
31
|
elin1d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∈ 𝒫 ( 𝐽 × ℕ0 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∈ 𝒫 ( 𝐽 × ℕ0 ) ) |
| 34 |
33
|
elpwid |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) |
| 35 |
|
fvelimab |
⊢ ( ( 𝐹 Fn ( 𝐽 × ℕ0 ) ∧ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) → ( 𝐵 ∈ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ↔ ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ) ) |
| 36 |
25 34 35
|
sylancr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∈ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ↔ ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ) ) |
| 37 |
4
|
ssrab3 |
⊢ 𝐽 ⊆ ℕ |
| 38 |
|
fveq1 |
⊢ ( 𝑟 = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) → ( 𝑟 ‘ 𝑥 ) = ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) |
| 39 |
38
|
eleq2d |
⊢ ( 𝑟 = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) → ( 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ↔ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) ) |
| 40 |
39
|
anbi2d |
⊢ ( 𝑟 = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) → ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) ) ) |
| 41 |
40
|
opabbidv |
⊢ ( 𝑟 = ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } ) |
| 42 |
14 37
|
ssexi |
⊢ 𝐽 ∈ V |
| 43 |
|
abid2 |
⊢ { 𝑦 ∣ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) } = ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) |
| 44 |
43
|
fvexi |
⊢ { 𝑦 ∣ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) } ∈ V |
| 45 |
44
|
a1i |
⊢ ( 𝑥 ∈ 𝐽 → { 𝑦 ∣ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) } ∈ V ) |
| 46 |
42 45
|
opabex3 |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } ∈ V |
| 47 |
46
|
a1i |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } ∈ V ) |
| 48 |
7 41 26 47
|
fvmptd3 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } ) |
| 49 |
|
simpl |
⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑛 ) → 𝑥 = 𝑡 ) |
| 50 |
49
|
eleq1d |
⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑛 ) → ( 𝑥 ∈ 𝐽 ↔ 𝑡 ∈ 𝐽 ) ) |
| 51 |
|
simpr |
⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑛 ) → 𝑦 = 𝑛 ) |
| 52 |
49
|
fveq2d |
⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑛 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) = ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) |
| 53 |
51 52
|
eleq12d |
⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑛 ) → ( 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ↔ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) ) |
| 54 |
50 53
|
anbi12d |
⊢ ( ( 𝑥 = 𝑡 ∧ 𝑦 = 𝑛 ) → ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) ↔ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) ) ) |
| 55 |
54
|
cbvopabv |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } = { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } |
| 56 |
48 55
|
eqtrdi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) = { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } ) |
| 57 |
56
|
eleq2d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ↔ 𝑤 ∈ { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } ) ) |
| 58 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt0 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ∧ ( ◡ 𝐴 “ ℕ ) ∈ Fin ∧ ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) ) |
| 59 |
58
|
simp1bi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 ∈ ( ℕ0 ↑m ℕ ) ) |
| 60 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 61 |
60 14
|
elmap |
⊢ ( 𝐴 ∈ ( ℕ0 ↑m ℕ ) ↔ 𝐴 : ℕ ⟶ ℕ0 ) |
| 62 |
59 61
|
sylib |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 ) |
| 63 |
|
ffun |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → Fun 𝐴 ) |
| 64 |
|
funres |
⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ 𝐽 ) ) |
| 65 |
62 63 64
|
3syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → Fun ( 𝐴 ↾ 𝐽 ) ) |
| 66 |
|
fssres |
⊢ ( ( 𝐴 : ℕ ⟶ ℕ0 ∧ 𝐽 ⊆ ℕ ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 67 |
62 37 66
|
sylancl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 ) |
| 68 |
|
fdm |
⊢ ( ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 → dom ( 𝐴 ↾ 𝐽 ) = 𝐽 ) |
| 69 |
68
|
eleq2d |
⊢ ( ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 → ( 𝑡 ∈ dom ( 𝐴 ↾ 𝐽 ) ↔ 𝑡 ∈ 𝐽 ) ) |
| 70 |
67 69
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑡 ∈ dom ( 𝐴 ↾ 𝐽 ) ↔ 𝑡 ∈ 𝐽 ) ) |
| 71 |
70
|
biimpar |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ 𝐽 ) → 𝑡 ∈ dom ( 𝐴 ↾ 𝐽 ) ) |
| 72 |
|
fvco |
⊢ ( ( Fun ( 𝐴 ↾ 𝐽 ) ∧ 𝑡 ∈ dom ( 𝐴 ↾ 𝐽 ) ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) = ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑡 ) ) ) |
| 73 |
65 71 72
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ 𝐽 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) = ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑡 ) ) ) |
| 74 |
|
fvres |
⊢ ( 𝑡 ∈ 𝐽 → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑡 ) = ( 𝐴 ‘ 𝑡 ) ) |
| 75 |
74
|
fveq2d |
⊢ ( 𝑡 ∈ 𝐽 → ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑡 ) ) = ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ 𝐽 ) → ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑡 ) ) = ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
| 77 |
73 76
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ 𝐽 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) = ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) |
| 78 |
77
|
eleq2d |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑡 ∈ 𝐽 ) → ( 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ↔ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) |
| 79 |
78
|
pm5.32da |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) ↔ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ) |
| 80 |
79
|
opabbidv |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } = { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) } ) |
| 81 |
80
|
eleq2d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑤 ∈ { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } ↔ 𝑤 ∈ { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) } ) ) |
| 82 |
|
elopab |
⊢ ( 𝑤 ∈ { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) } ↔ ∃ 𝑡 ∃ 𝑛 ( 𝑤 = 〈 𝑡 , 𝑛 〉 ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ) |
| 83 |
81 82
|
bitrdi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑤 ∈ { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } ↔ ∃ 𝑡 ∃ 𝑛 ( 𝑤 = 〈 𝑡 , 𝑛 〉 ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ) ) |
| 84 |
|
ancom |
⊢ ( ( 𝑤 = 〈 𝑡 , 𝑛 〉 ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) |
| 85 |
|
anass |
⊢ ( ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ↔ ( 𝑡 ∈ 𝐽 ∧ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 86 |
84 85
|
bitri |
⊢ ( ( 𝑤 = 〈 𝑡 , 𝑛 〉 ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ( 𝑡 ∈ 𝐽 ∧ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 87 |
86
|
2exbii |
⊢ ( ∃ 𝑡 ∃ 𝑛 ( 𝑤 = 〈 𝑡 , 𝑛 〉 ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑡 ∃ 𝑛 ( 𝑡 ∈ 𝐽 ∧ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 88 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ↔ ∃ 𝑛 ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) |
| 89 |
88
|
anbi2i |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) ↔ ( 𝑡 ∈ 𝐽 ∧ ∃ 𝑛 ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 90 |
89
|
exbii |
⊢ ( ∃ 𝑡 ( 𝑡 ∈ 𝐽 ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) ↔ ∃ 𝑡 ( 𝑡 ∈ 𝐽 ∧ ∃ 𝑛 ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 91 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ↔ ∃ 𝑡 ( 𝑡 ∈ 𝐽 ∧ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) |
| 92 |
|
exdistr |
⊢ ( ∃ 𝑡 ∃ 𝑛 ( 𝑡 ∈ 𝐽 ∧ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ↔ ∃ 𝑡 ( 𝑡 ∈ 𝐽 ∧ ∃ 𝑛 ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 93 |
90 91 92
|
3bitr4i |
⊢ ( ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ↔ ∃ 𝑡 ∃ 𝑛 ( 𝑡 ∈ 𝐽 ∧ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) ) |
| 94 |
87 93
|
bitr4i |
⊢ ( ∃ 𝑡 ∃ 𝑛 ( 𝑤 = 〈 𝑡 , 𝑛 〉 ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ↔ ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) |
| 95 |
83 94
|
bitrdi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑤 ∈ { 〈 𝑡 , 𝑛 〉 ∣ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑡 ) ) } ↔ ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) |
| 96 |
57 95
|
bitrd |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ↔ ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) ) |
| 97 |
96
|
biimpa |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) → ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) |
| 98 |
97
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) → ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 ) |
| 99 |
|
fveq2 |
⊢ ( 𝑤 = 〈 𝑡 , 𝑛 〉 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) ) |
| 100 |
99
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) ) |
| 101 |
|
bitsss |
⊢ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ⊆ ℕ0 |
| 102 |
101
|
sseli |
⊢ ( 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) → 𝑛 ∈ ℕ0 ) |
| 103 |
102
|
anim2i |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) → ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) ) |
| 104 |
103
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) → ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) ) |
| 105 |
|
opelxp |
⊢ ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) ↔ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) ) |
| 106 |
4 5
|
oddpwdcv |
⊢ ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) ) · ( 1st ‘ 〈 𝑡 , 𝑛 〉 ) ) ) |
| 107 |
|
vex |
⊢ 𝑡 ∈ V |
| 108 |
|
vex |
⊢ 𝑛 ∈ V |
| 109 |
107 108
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑛 |
| 110 |
109
|
oveq2i |
⊢ ( 2 ↑ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) ) = ( 2 ↑ 𝑛 ) |
| 111 |
107 108
|
op1st |
⊢ ( 1st ‘ 〈 𝑡 , 𝑛 〉 ) = 𝑡 |
| 112 |
110 111
|
oveq12i |
⊢ ( ( 2 ↑ ( 2nd ‘ 〈 𝑡 , 𝑛 〉 ) ) · ( 1st ‘ 〈 𝑡 , 𝑛 〉 ) ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) |
| 113 |
106 112
|
eqtrdi |
⊢ ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ) |
| 114 |
105 113
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ) |
| 115 |
104 114
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ) |
| 116 |
100 115
|
eqtr2d |
⊢ ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) ∧ 𝑤 = 〈 𝑡 , 𝑛 〉 ) → ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 117 |
116
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝑡 ∈ 𝐽 ∧ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ) ) → ( 𝑤 = 〈 𝑡 , 𝑛 〉 → ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 118 |
117
|
reximdvva |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) → ( ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) 𝑤 = 〈 𝑡 , 𝑛 〉 → ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 119 |
98 118
|
mpd |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) → ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 120 |
|
ssrexv |
⊢ ( 𝐽 ⊆ ℕ → ( ∃ 𝑡 ∈ 𝐽 ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 121 |
37 119 120
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 122 |
121
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝐵 ) → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 123 |
|
eqeq2 |
⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝐵 → ( ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ) |
| 124 |
123
|
rexbidv |
⊢ ( ( 𝐹 ‘ 𝑤 ) = 𝐵 → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝐵 ) → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ) |
| 126 |
125
|
rexbidv |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝐵 ) → ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ) |
| 127 |
122 126
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ∧ ( 𝐹 ‘ 𝑤 ) = 𝐵 ) → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) |
| 128 |
127
|
r19.29an |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ) → ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) |
| 129 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ) |
| 130 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 𝑥 ∈ 𝐽 ) |
| 131 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 132 |
68
|
eleq2d |
⊢ ( ( 𝐴 ↾ 𝐽 ) : 𝐽 ⟶ ℕ0 → ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐽 ) ↔ 𝑥 ∈ 𝐽 ) ) |
| 133 |
67 132
|
syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐽 ) ↔ 𝑥 ∈ 𝐽 ) ) |
| 134 |
133
|
biimpar |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ dom ( 𝐴 ↾ 𝐽 ) ) |
| 135 |
|
fvco |
⊢ ( ( Fun ( 𝐴 ↾ 𝐽 ) ∧ 𝑥 ∈ dom ( 𝐴 ↾ 𝐽 ) ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) = ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑥 ) ) ) |
| 136 |
65 134 135
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ 𝐽 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) = ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑥 ) ) ) |
| 137 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐽 → ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 138 |
137
|
fveq2d |
⊢ ( 𝑥 ∈ 𝐽 → ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑥 ) ) = ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 139 |
138
|
adantl |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ 𝐽 ) → ( bits ‘ ( ( 𝐴 ↾ 𝐽 ) ‘ 𝑥 ) ) = ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 140 |
136 139
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ 𝐽 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) = ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 141 |
129 130 140
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) = ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 142 |
131 141
|
eleqtrrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) |
| 143 |
48
|
eleq2d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } ) ) |
| 144 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) } ↔ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) ) |
| 145 |
143 144
|
bitrdi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ↔ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) ) ) |
| 146 |
145
|
biimpar |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ‘ 𝑥 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) |
| 147 |
129 130 142 146
|
syl12anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) |
| 148 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 149 |
34
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ⊆ ( 𝐽 × ℕ0 ) ) |
| 150 |
149 147
|
sseldd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) ) |
| 151 |
|
opeq1 |
⊢ ( 𝑡 = 𝑥 → 〈 𝑡 , 𝑦 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 152 |
151
|
eleq1d |
⊢ ( 𝑡 = 𝑥 → ( 〈 𝑡 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) ) ) |
| 153 |
151
|
fveq2d |
⊢ ( 𝑡 = 𝑥 → ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 154 |
|
oveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 2 ↑ 𝑦 ) · 𝑡 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 155 |
153 154
|
eqeq12d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑡 ) ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
| 156 |
152 155
|
imbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( 〈 𝑡 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑡 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) ) |
| 157 |
|
opeq2 |
⊢ ( 𝑛 = 𝑦 → 〈 𝑡 , 𝑛 〉 = 〈 𝑡 , 𝑦 〉 ) |
| 158 |
157
|
eleq1d |
⊢ ( 𝑛 = 𝑦 → ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) ↔ 〈 𝑡 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) ) ) |
| 159 |
157
|
fveq2d |
⊢ ( 𝑛 = 𝑦 → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) ) |
| 160 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑦 ) ) |
| 161 |
160
|
oveq1d |
⊢ ( 𝑛 = 𝑦 → ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( ( 2 ↑ 𝑦 ) · 𝑡 ) ) |
| 162 |
159 161
|
eqeq12d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ↔ ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑡 ) ) ) |
| 163 |
158 162
|
imbi12d |
⊢ ( 𝑛 = 𝑦 → ( ( 〈 𝑡 , 𝑛 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑛 〉 ) = ( ( 2 ↑ 𝑛 ) · 𝑡 ) ) ↔ ( 〈 𝑡 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑡 ) ) ) ) |
| 164 |
163 113
|
chvarvv |
⊢ ( 〈 𝑡 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑡 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑡 ) ) |
| 165 |
156 164
|
chvarvv |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 166 |
|
eqeq2 |
⊢ ( ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐵 ) ) |
| 167 |
166
|
biimpa |
⊢ ( ( ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐵 ) |
| 168 |
165 167
|
sylan2 |
⊢ ( ( ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 × ℕ0 ) ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐵 ) |
| 169 |
148 150 168
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐵 ) |
| 170 |
|
fveqeq2 |
⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝐹 ‘ 𝑤 ) = 𝐵 ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐵 ) ) |
| 171 |
170
|
rspcev |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐵 ) → ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ) |
| 172 |
147 169 171
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ∧ 𝑥 ∈ 𝐽 ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ) |
| 173 |
|
oveq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 2 ↑ 𝑛 ) · 𝑡 ) = ( ( 2 ↑ 𝑛 ) · 𝑥 ) ) |
| 174 |
173
|
eqeq1d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ↔ ( ( 2 ↑ 𝑛 ) · 𝑥 ) = 𝐵 ) ) |
| 175 |
160
|
oveq1d |
⊢ ( 𝑛 = 𝑦 → ( ( 2 ↑ 𝑛 ) · 𝑥 ) = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 176 |
175
|
eqeq1d |
⊢ ( 𝑛 = 𝑦 → ( ( ( 2 ↑ 𝑛 ) · 𝑥 ) = 𝐵 ↔ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) |
| 177 |
174 176
|
sylan9bb |
⊢ ( ( 𝑡 = 𝑥 ∧ 𝑛 = 𝑦 ) → ( ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ↔ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) |
| 178 |
|
simpl |
⊢ ( ( 𝑡 = 𝑥 ∧ 𝑛 = 𝑦 ) → 𝑡 = 𝑥 ) |
| 179 |
178
|
fveq2d |
⊢ ( ( 𝑡 = 𝑥 ∧ 𝑛 = 𝑦 ) → ( 𝐴 ‘ 𝑡 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 180 |
179
|
fveq2d |
⊢ ( ( 𝑡 = 𝑥 ∧ 𝑛 = 𝑦 ) → ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) = ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 181 |
177 180
|
cbvrexdva2 |
⊢ ( 𝑡 = 𝑥 → ( ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ↔ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) |
| 182 |
181
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 183 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) |
| 184 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ ℕ |
| 185 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 |
| 186 |
184 185
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 187 |
183 186
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) |
| 188 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → 𝑥 ∈ ℕ ) |
| 189 |
62
|
ffvelcdmda |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) → ( 𝐴 ‘ 𝑥 ) ∈ ℕ0 ) |
| 190 |
189
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ℕ0 ) |
| 191 |
|
elnn0 |
⊢ ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑥 ) = 0 ) ) |
| 192 |
190 191
|
sylib |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝐴 ‘ 𝑥 ) = 0 ) ) |
| 193 |
|
n0i |
⊢ ( 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) → ¬ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) = ∅ ) |
| 194 |
193
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → ¬ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) = ∅ ) |
| 195 |
|
fveq2 |
⊢ ( ( 𝐴 ‘ 𝑥 ) = 0 → ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) = ( bits ‘ 0 ) ) |
| 196 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
| 197 |
195 196
|
eqtrdi |
⊢ ( ( 𝐴 ‘ 𝑥 ) = 0 → ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) = ∅ ) |
| 198 |
194 197
|
nsyl |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → ¬ ( 𝐴 ‘ 𝑥 ) = 0 ) |
| 199 |
192 198
|
olcnd |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ℕ ) |
| 200 |
58
|
simp3bi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ◡ 𝐴 “ ℕ ) ⊆ 𝐽 ) |
| 201 |
200
|
sselda |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ) → 𝑛 ∈ 𝐽 ) |
| 202 |
|
breq2 |
⊢ ( 𝑧 = 𝑛 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑛 ) ) |
| 203 |
202
|
notbid |
⊢ ( 𝑧 = 𝑛 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛 ) ) |
| 204 |
203 4
|
elrab2 |
⊢ ( 𝑛 ∈ 𝐽 ↔ ( 𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛 ) ) |
| 205 |
204
|
simprbi |
⊢ ( 𝑛 ∈ 𝐽 → ¬ 2 ∥ 𝑛 ) |
| 206 |
201 205
|
syl |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ) → ¬ 2 ∥ 𝑛 ) |
| 207 |
206
|
ralrimiva |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ∀ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ) |
| 208 |
|
ffn |
⊢ ( 𝐴 : ℕ ⟶ ℕ0 → 𝐴 Fn ℕ ) |
| 209 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ → ( 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ 𝑛 ) ∈ ℕ ) ) ) |
| 210 |
62 208 209
|
3syl |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ↔ ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ 𝑛 ) ∈ ℕ ) ) ) |
| 211 |
210
|
imbi1d |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) → ¬ 2 ∥ 𝑛 ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ 𝑛 ) ∈ ℕ ) → ¬ 2 ∥ 𝑛 ) ) ) |
| 212 |
|
impexp |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ 𝑛 ) ∈ ℕ ) → ¬ 2 ∥ 𝑛 ) ↔ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ → ¬ 2 ∥ 𝑛 ) ) ) |
| 213 |
211 212
|
bitrdi |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) → ¬ 2 ∥ 𝑛 ) ↔ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ → ¬ 2 ∥ 𝑛 ) ) ) ) |
| 214 |
213
|
ralbidv2 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∀ 𝑛 ∈ ( ◡ 𝐴 “ ℕ ) ¬ 2 ∥ 𝑛 ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ → ¬ 2 ∥ 𝑛 ) ) ) |
| 215 |
207 214
|
mpbid |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ∀ 𝑛 ∈ ℕ ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ → ¬ 2 ∥ 𝑛 ) ) |
| 216 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 217 |
216
|
eleq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ ↔ ( 𝐴 ‘ 𝑛 ) ∈ ℕ ) ) |
| 218 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( 2 ∥ 𝑥 ↔ 2 ∥ 𝑛 ) ) |
| 219 |
218
|
notbid |
⊢ ( 𝑥 = 𝑛 → ( ¬ 2 ∥ 𝑥 ↔ ¬ 2 ∥ 𝑛 ) ) |
| 220 |
217 219
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ → ¬ 2 ∥ 𝑥 ) ↔ ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ → ¬ 2 ∥ 𝑛 ) ) ) |
| 221 |
220
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℕ ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ → ¬ 2 ∥ 𝑥 ) ↔ ∀ 𝑛 ∈ ℕ ( ( 𝐴 ‘ 𝑛 ) ∈ ℕ → ¬ 2 ∥ 𝑛 ) ) |
| 222 |
215 221
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ∀ 𝑥 ∈ ℕ ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ → ¬ 2 ∥ 𝑥 ) ) |
| 223 |
222
|
r19.21bi |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑥 ) ∈ ℕ → ¬ 2 ∥ 𝑥 ) ) |
| 224 |
223
|
imp |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ ℕ ) → ¬ 2 ∥ 𝑥 ) |
| 225 |
199 224
|
syldan |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → ¬ 2 ∥ 𝑥 ) |
| 226 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑥 ) ) |
| 227 |
226
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥 ) ) |
| 228 |
227 4
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥 ) ) |
| 229 |
188 225 228
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝐽 ) |
| 230 |
229
|
adantlrr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝐽 ) |
| 231 |
230
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) ∧ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ) ∧ ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → 𝑥 ∈ 𝐽 ) |
| 232 |
|
simprr |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 233 |
187 231 232
|
r19.29af |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) → 𝑥 ∈ 𝐽 ) |
| 234 |
233 232
|
jca |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) → ( 𝑥 ∈ 𝐽 ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) |
| 235 |
234
|
ex |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( 𝑥 ∈ ℕ ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ( 𝑥 ∈ 𝐽 ∧ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) ) |
| 236 |
235
|
reximdv2 |
⊢ ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) → ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) ) |
| 237 |
236
|
imp |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 238 |
237
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 239 |
182 238
|
sylan2b |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ ( bits ‘ ( 𝐴 ‘ 𝑥 ) ) ( ( 2 ↑ 𝑦 ) · 𝑥 ) = 𝐵 ) |
| 240 |
172 239
|
r19.29vva |
⊢ ( ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) ∧ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) → ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ) |
| 241 |
128 240
|
impbida |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑤 ∈ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ( 𝐹 ‘ 𝑤 ) = 𝐵 ↔ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ) |
| 242 |
36 241
|
bitrd |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∈ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) ↔ ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 ) ) |
| 243 |
242
|
ifbid |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → if ( 𝐵 ∈ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝐴 ↾ 𝐽 ) ) ) ) , 1 , 0 ) = if ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 , 1 , 0 ) ) |
| 244 |
13 23 243
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑇 ∩ 𝑅 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝐵 ) = if ( ∃ 𝑡 ∈ ℕ ∃ 𝑛 ∈ ( bits ‘ ( 𝐴 ‘ 𝑡 ) ) ( ( 2 ↑ 𝑛 ) · 𝑡 ) = 𝐵 , 1 , 0 ) ) |