| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 2 | 1 | ad2antlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n e. RR ) | 
						
							| 3 | 2 | ltpnfd |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n < +oo ) | 
						
							| 4 |  | iftrue |  |-  ( ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) | 
						
							| 6 |  | simpr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) = +oo ) | 
						
							| 7 | 3 5 6 | 3brtr4d |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) | 
						
							| 8 |  | iffalse |  |-  ( -. ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) | 
						
							| 10 |  | itg2cl |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) | 
						
							| 11 |  | xrrebnd |  |-  ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) | 
						
							| 13 |  | itg2ge0 |  |-  ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) | 
						
							| 14 |  | mnflt0 |  |-  -oo < 0 | 
						
							| 15 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 16 |  | 0xr |  |-  0 e. RR* | 
						
							| 17 |  | xrltletr |  |-  ( ( -oo e. RR* /\ 0 e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) | 
						
							| 18 | 15 16 10 17 | mp3an12i |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) | 
						
							| 19 | 14 18 | mpani |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( 0 <_ ( S.2 ` F ) -> -oo < ( S.2 ` F ) ) ) | 
						
							| 20 | 13 19 | mpd |  |-  ( F : RR --> ( 0 [,] +oo ) -> -oo < ( S.2 ` F ) ) | 
						
							| 21 | 20 | biantrurd |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) | 
						
							| 22 |  | nltpnft |  |-  ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) | 
						
							| 23 | 10 22 | syl |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) | 
						
							| 24 | 23 | con2bid |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> -. ( S.2 ` F ) = +oo ) ) | 
						
							| 25 | 12 21 24 | 3bitr2rd |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( -. ( S.2 ` F ) = +oo <-> ( S.2 ` F ) e. RR ) ) | 
						
							| 26 | 25 | biimpa |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) | 
						
							| 27 | 26 | adantlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) | 
						
							| 28 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 29 | 28 | rpreccld |  |-  ( n e. NN -> ( 1 / n ) e. RR+ ) | 
						
							| 30 | 29 | ad2antlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR+ ) | 
						
							| 31 | 27 30 | ltsubrpd |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) < ( S.2 ` F ) ) | 
						
							| 32 | 9 31 | eqbrtrd |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) | 
						
							| 33 | 7 32 | pm2.61dan |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) | 
						
							| 34 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 35 | 34 | ad2antlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR ) | 
						
							| 36 | 27 35 | resubcld |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) e. RR ) | 
						
							| 37 | 2 36 | ifclda |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) | 
						
							| 38 | 37 | rexrd |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) | 
						
							| 39 | 10 | adantr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR* ) | 
						
							| 40 |  | xrltnle |  |-  ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 41 | 38 39 40 | syl2anc |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 42 | 33 41 | mpbid |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 43 |  | itg2leub |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) | 
						
							| 44 | 38 43 | syldan |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) | 
						
							| 45 | 42 44 | mtbid |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 46 |  | rexanali |  |-  ( E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) <-> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 47 | 45 46 | sylibr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 48 |  | itg1cl |  |-  ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) | 
						
							| 49 |  | ltnle |  |-  ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR /\ ( S.1 ` f ) e. RR ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 50 | 37 48 49 | syl2an |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 51 | 50 | anbi2d |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) | 
						
							| 52 | 51 | rexbidva |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) | 
						
							| 53 | 47 52 | mpbird |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) | 
						
							| 54 | 53 | ralrimiva |  |-  ( F : RR --> ( 0 [,] +oo ) -> A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) | 
						
							| 55 |  | ovex |  |-  ( RR ^m RR ) e. _V | 
						
							| 56 |  | i1ff |  |-  ( x e. dom S.1 -> x : RR --> RR ) | 
						
							| 57 |  | reex |  |-  RR e. _V | 
						
							| 58 | 57 57 | elmap |  |-  ( x e. ( RR ^m RR ) <-> x : RR --> RR ) | 
						
							| 59 | 56 58 | sylibr |  |-  ( x e. dom S.1 -> x e. ( RR ^m RR ) ) | 
						
							| 60 | 59 | ssriv |  |-  dom S.1 C_ ( RR ^m RR ) | 
						
							| 61 | 55 60 | ssexi |  |-  dom S.1 e. _V | 
						
							| 62 |  | nnenom |  |-  NN ~~ _om | 
						
							| 63 |  | breq1 |  |-  ( f = ( g ` n ) -> ( f oR <_ F <-> ( g ` n ) oR <_ F ) ) | 
						
							| 64 |  | fveq2 |  |-  ( f = ( g ` n ) -> ( S.1 ` f ) = ( S.1 ` ( g ` n ) ) ) | 
						
							| 65 | 64 | breq2d |  |-  ( f = ( g ` n ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) | 
						
							| 66 | 63 65 | anbi12d |  |-  ( f = ( g ` n ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) | 
						
							| 67 | 61 62 66 | axcc4 |  |-  ( A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) | 
						
							| 68 | 54 67 | syl |  |-  ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) | 
						
							| 69 |  | simprl |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> g : NN --> dom S.1 ) | 
						
							| 70 |  | simpl |  |-  ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( g ` n ) oR <_ F ) | 
						
							| 71 | 70 | ralimi |  |-  ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) | 
						
							| 72 | 71 | ad2antll |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) | 
						
							| 73 | 10 | adantr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) e. RR* ) | 
						
							| 74 |  | ffvelcdm |  |-  ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( g ` n ) e. dom S.1 ) | 
						
							| 75 |  | itg1cl |  |-  ( ( g ` n ) e. dom S.1 -> ( S.1 ` ( g ` n ) ) e. RR ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) | 
						
							| 77 | 76 | fmpttd |  |-  ( g : NN --> dom S.1 -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) | 
						
							| 78 | 77 | ad2antrl |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) | 
						
							| 79 | 78 | frnd |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) | 
						
							| 80 |  | ressxr |  |-  RR C_ RR* | 
						
							| 81 | 79 80 | sstrdi |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) | 
						
							| 82 |  | supxrcl |  |-  ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) | 
						
							| 84 | 38 | adantlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) | 
						
							| 85 | 76 | adantll |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) | 
						
							| 86 | 85 | rexrd |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR* ) | 
						
							| 87 |  | xrltle |  |-  ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) | 
						
							| 88 | 84 86 87 | syl2anc |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) | 
						
							| 89 |  | 2fveq3 |  |-  ( n = m -> ( S.1 ` ( g ` n ) ) = ( S.1 ` ( g ` m ) ) ) | 
						
							| 90 | 89 | cbvmptv |  |-  ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) | 
						
							| 91 | 90 | rneqi |  |-  ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) | 
						
							| 92 | 77 | adantl |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) | 
						
							| 93 | 92 | frnd |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) | 
						
							| 94 | 93 80 | sstrdi |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) | 
						
							| 96 | 91 95 | eqsstrrid |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* ) | 
						
							| 97 |  | 2fveq3 |  |-  ( m = n -> ( S.1 ` ( g ` m ) ) = ( S.1 ` ( g ` n ) ) ) | 
						
							| 98 |  | eqid |  |-  ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) | 
						
							| 99 |  | fvex |  |-  ( S.1 ` ( g ` n ) ) e. _V | 
						
							| 100 | 97 98 99 | fvmpt |  |-  ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) = ( S.1 ` ( g ` n ) ) ) | 
						
							| 101 |  | fvex |  |-  ( S.1 ` ( g ` m ) ) e. _V | 
						
							| 102 | 101 98 | fnmpti |  |-  ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN | 
						
							| 103 |  | fnfvelrn |  |-  ( ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN /\ n e. NN ) -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) | 
						
							| 104 | 102 103 | mpan |  |-  ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) | 
						
							| 105 | 100 104 | eqeltrrd |  |-  ( n e. NN -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) | 
						
							| 107 |  | supxrub |  |-  ( ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* /\ ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) | 
						
							| 108 | 96 106 107 | syl2anc |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) | 
						
							| 109 | 91 | supeq1i |  |-  sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) | 
						
							| 110 | 95 82 | syl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) | 
						
							| 111 | 109 110 | eqeltrrid |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) | 
						
							| 112 |  | xrletr |  |-  ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* /\ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 113 | 84 86 111 112 | syl3anc |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 114 | 108 113 | mpan2d |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 115 | 88 114 | syld |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 116 | 115 | adantld |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 117 | 116 | ralimdva |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 118 | 117 | impr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) | 
						
							| 119 |  | breq2 |  |-  ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 120 | 119 | ralbidv |  |-  ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 121 |  | breq2 |  |-  ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( S.2 ` F ) <_ x <-> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 122 | 120 121 | imbi12d |  |-  ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) <-> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) ) | 
						
							| 123 |  | elxr |  |-  ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) | 
						
							| 124 |  | simplrl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> x e. RR ) | 
						
							| 125 |  | arch |  |-  ( x e. RR -> E. n e. NN x < n ) | 
						
							| 126 | 124 125 | syl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < n ) | 
						
							| 127 | 4 | adantl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) | 
						
							| 128 | 127 | breq2d |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < n ) ) | 
						
							| 129 | 128 | rexbidv |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN x < n ) ) | 
						
							| 130 | 126 129 | mpbird |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 131 | 26 | adantlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) | 
						
							| 132 |  | simplrl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x e. RR ) | 
						
							| 133 | 131 132 | resubcld |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - x ) e. RR ) | 
						
							| 134 |  | simplrr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x < ( S.2 ` F ) ) | 
						
							| 135 | 132 131 | posdifd |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( x < ( S.2 ` F ) <-> 0 < ( ( S.2 ` F ) - x ) ) ) | 
						
							| 136 | 134 135 | mpbid |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> 0 < ( ( S.2 ` F ) - x ) ) | 
						
							| 137 |  | nnrecl |  |-  ( ( ( ( S.2 ` F ) - x ) e. RR /\ 0 < ( ( S.2 ` F ) - x ) ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) | 
						
							| 138 | 133 136 137 | syl2anc |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) | 
						
							| 139 | 34 | adantl |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( 1 / n ) e. RR ) | 
						
							| 140 | 131 | adantr |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR ) | 
						
							| 141 | 132 | adantr |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> x e. RR ) | 
						
							| 142 |  | ltsub13 |  |-  ( ( ( 1 / n ) e. RR /\ ( S.2 ` F ) e. RR /\ x e. RR ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 143 | 139 140 141 142 | syl3anc |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 144 | 8 | ad2antlr |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) | 
						
							| 145 | 144 | breq2d |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 146 | 143 145 | bitr4d |  |-  ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 147 | 146 | rexbidva |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 148 | 138 147 | mpbid |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 149 | 130 148 | pm2.61dan |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 150 | 149 | expr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) | 
						
							| 151 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 152 |  | xrltnle |  |-  ( ( x e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) | 
						
							| 153 | 151 10 152 | syl2anr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) | 
						
							| 154 | 151 | ad2antlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> x e. RR* ) | 
						
							| 155 | 38 | adantlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) | 
						
							| 156 |  | xrltnle |  |-  ( ( x e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) | 
						
							| 157 | 154 155 156 | syl2anc |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) | 
						
							| 158 | 157 | rexbidva |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) | 
						
							| 159 |  | rexnal |  |-  ( E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) | 
						
							| 160 | 158 159 | bitrdi |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) | 
						
							| 161 | 150 153 160 | 3imtr3d |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( -. ( S.2 ` F ) <_ x -> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) | 
						
							| 162 | 161 | con4d |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 163 | 10 | adantr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) e. RR* ) | 
						
							| 164 |  | pnfge |  |-  ( ( S.2 ` F ) e. RR* -> ( S.2 ` F ) <_ +oo ) | 
						
							| 165 | 163 164 | syl |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ +oo ) | 
						
							| 166 |  | simpr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> x = +oo ) | 
						
							| 167 | 165 166 | breqtrrd |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ x ) | 
						
							| 168 | 167 | a1d |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 169 |  | 1nn |  |-  1 e. NN | 
						
							| 170 | 169 | ne0ii |  |-  NN =/= (/) | 
						
							| 171 |  | r19.2z |  |-  ( ( NN =/= (/) /\ A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) | 
						
							| 172 | 170 171 | mpan |  |-  ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) | 
						
							| 173 | 37 | adantlr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) | 
						
							| 174 |  | mnflt |  |-  ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) | 
						
							| 175 |  | rexr |  |-  ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) | 
						
							| 176 |  | xrltnle |  |-  ( ( -oo e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) | 
						
							| 177 | 15 175 176 | sylancr |  |-  ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) | 
						
							| 178 | 174 177 | mpbid |  |-  ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) | 
						
							| 179 | 173 178 | syl |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) | 
						
							| 180 |  | simplr |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> x = -oo ) | 
						
							| 181 | 180 | breq2d |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) | 
						
							| 182 | 179 181 | mtbird |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) | 
						
							| 183 | 182 | nrexdv |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> -. E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) | 
						
							| 184 | 183 | pm2.21d |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 185 | 172 184 | syl5 |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 186 | 162 168 185 | 3jaodan |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 187 | 123 186 | sylan2b |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR* ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 188 | 187 | ralrimiva |  |-  ( F : RR --> ( 0 [,] +oo ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 189 | 188 | adantr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) | 
						
							| 190 | 109 83 | eqeltrrid |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) | 
						
							| 191 | 122 189 190 | rspcdva |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) | 
						
							| 192 | 118 191 | mpd |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) | 
						
							| 193 | 192 109 | breqtrrdi |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) | 
						
							| 194 |  | itg2ub |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 /\ ( g ` n ) oR <_ F ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) | 
						
							| 195 | 194 | 3expia |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 196 | 74 195 | sylan2 |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ n e. NN ) ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 197 | 196 | anassrs |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 198 | 197 | adantrd |  |-  ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 199 | 198 | ralimdva |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 200 | 199 | impr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) | 
						
							| 201 |  | eqid |  |-  ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) | 
						
							| 202 | 89 201 101 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) = ( S.1 ` ( g ` m ) ) ) | 
						
							| 203 | 202 | breq1d |  |-  ( m e. NN -> ( ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 204 | 203 | ralbiia |  |-  ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) | 
						
							| 205 | 89 | breq1d |  |-  ( n = m -> ( ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 206 | 205 | cbvralvw |  |-  ( A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) | 
						
							| 207 | 204 206 | bitr4i |  |-  ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) | 
						
							| 208 | 200 207 | sylibr |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) | 
						
							| 209 |  | ffn |  |-  ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN ) | 
						
							| 210 |  | breq1 |  |-  ( z = ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) -> ( z <_ ( S.2 ` F ) <-> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) | 
						
							| 211 | 210 | ralrn |  |-  ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) | 
						
							| 212 | 78 209 211 | 3syl |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) | 
						
							| 213 | 208 212 | mpbird |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) | 
						
							| 214 |  | supxrleub |  |-  ( ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* /\ ( S.2 ` F ) e. RR* ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) | 
						
							| 215 | 81 73 214 | syl2anc |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) | 
						
							| 216 | 213 215 | mpbird |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) ) | 
						
							| 217 | 73 83 193 216 | xrletrid |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) | 
						
							| 218 | 69 72 217 | 3jca |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) | 
						
							| 219 | 218 | ex |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) | 
						
							| 220 | 219 | eximdv |  |-  ( F : RR --> ( 0 [,] +oo ) -> ( E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) | 
						
							| 221 | 68 220 | mpd |  |-  ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |