| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 2 | 1 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  𝑛  ∈  ℝ ) | 
						
							| 3 | 2 | ltpnfd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  𝑛  <  +∞ ) | 
						
							| 4 |  | iftrue | ⊢ ( ( ∫2 ‘ 𝐹 )  =  +∞  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  =  𝑛 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  =  𝑛 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  =  +∞ ) | 
						
							| 7 | 3 5 6 | 3brtr4d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 8 |  | iffalse | ⊢ ( ¬  ( ∫2 ‘ 𝐹 )  =  +∞  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  =  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  =  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) | 
						
							| 10 |  | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 11 |  | xrrebnd | ⊢ ( ( ∫2 ‘ 𝐹 )  ∈  ℝ*  →  ( ( ∫2 ‘ 𝐹 )  ∈  ℝ  ↔  ( -∞  <  ( ∫2 ‘ 𝐹 )  ∧  ( ∫2 ‘ 𝐹 )  <  +∞ ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( ∫2 ‘ 𝐹 )  ∈  ℝ  ↔  ( -∞  <  ( ∫2 ‘ 𝐹 )  ∧  ( ∫2 ‘ 𝐹 )  <  +∞ ) ) ) | 
						
							| 13 |  | itg2ge0 | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  0  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 14 |  | mnflt0 | ⊢ -∞  <  0 | 
						
							| 15 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 16 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 17 |  | xrltletr | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ*  ∧  ( ∫2 ‘ 𝐹 )  ∈  ℝ* )  →  ( ( -∞  <  0  ∧  0  ≤  ( ∫2 ‘ 𝐹 ) )  →  -∞  <  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 18 | 15 16 10 17 | mp3an12i | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( -∞  <  0  ∧  0  ≤  ( ∫2 ‘ 𝐹 ) )  →  -∞  <  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 19 | 14 18 | mpani | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( 0  ≤  ( ∫2 ‘ 𝐹 )  →  -∞  <  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 20 | 13 19 | mpd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  -∞  <  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 21 | 20 | biantrurd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( ∫2 ‘ 𝐹 )  <  +∞  ↔  ( -∞  <  ( ∫2 ‘ 𝐹 )  ∧  ( ∫2 ‘ 𝐹 )  <  +∞ ) ) ) | 
						
							| 22 |  | nltpnft | ⊢ ( ( ∫2 ‘ 𝐹 )  ∈  ℝ*  →  ( ( ∫2 ‘ 𝐹 )  =  +∞  ↔  ¬  ( ∫2 ‘ 𝐹 )  <  +∞ ) ) | 
						
							| 23 | 10 22 | syl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( ∫2 ‘ 𝐹 )  =  +∞  ↔  ¬  ( ∫2 ‘ 𝐹 )  <  +∞ ) ) | 
						
							| 24 | 23 | con2bid | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( ∫2 ‘ 𝐹 )  <  +∞  ↔  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ ) ) | 
						
							| 25 | 12 21 24 | 3bitr2rd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ¬  ( ∫2 ‘ 𝐹 )  =  +∞  ↔  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) ) | 
						
							| 26 | 25 | biimpa | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 27 | 26 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 28 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 29 | 28 | rpreccld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 31 | 27 30 | ltsubrpd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) )  <  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 32 | 9 31 | eqbrtrd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 33 | 7 32 | pm2.61dan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 34 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 36 | 27 35 | resubcld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 37 | 2 36 | ifclda | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 38 | 37 | rexrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 39 | 10 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 40 |  | xrltnle | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ*  ∧  ( ∫2 ‘ 𝐹 )  ∈  ℝ* )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫2 ‘ 𝐹 )  ↔  ¬  ( ∫2 ‘ 𝐹 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫2 ‘ 𝐹 )  ↔  ¬  ( ∫2 ‘ 𝐹 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 42 | 33 41 | mpbid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ¬  ( ∫2 ‘ 𝐹 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 43 |  | itg2leub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* )  →  ( ( ∫2 ‘ 𝐹 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) ) | 
						
							| 44 | 38 43 | syldan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( ( ∫2 ‘ 𝐹 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) ) | 
						
							| 45 | 42 44 | mtbid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ¬  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 46 |  | rexanali | ⊢ ( ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) )  ↔  ¬  ∀ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  →  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 47 | 45 46 | sylibr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 48 |  | itg1cl | ⊢ ( 𝑓  ∈  dom  ∫1  →  ( ∫1 ‘ 𝑓 )  ∈  ℝ ) | 
						
							| 49 |  | ltnle | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ  ∧  ( ∫1 ‘ 𝑓 )  ∈  ℝ )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 )  ↔  ¬  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 50 | 37 48 49 | syl2an | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑓  ∈  dom  ∫1 )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 )  ↔  ¬  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 51 | 50 | anbi2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑓  ∈  dom  ∫1 )  →  ( ( 𝑓  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 ) )  ↔  ( 𝑓  ∘r   ≤  𝐹  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) ) | 
						
							| 52 | 51 | rexbidva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 ) )  ↔  ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  ¬  ( ∫1 ‘ 𝑓 )  ≤  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) ) | 
						
							| 53 | 47 52 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 54 | 53 | ralrimiva | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑛  ∈  ℕ ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 ) ) ) | 
						
							| 55 |  | ovex | ⊢ ( ℝ  ↑m  ℝ )  ∈  V | 
						
							| 56 |  | i1ff | ⊢ ( 𝑥  ∈  dom  ∫1  →  𝑥 : ℝ ⟶ ℝ ) | 
						
							| 57 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 58 | 57 57 | elmap | ⊢ ( 𝑥  ∈  ( ℝ  ↑m  ℝ )  ↔  𝑥 : ℝ ⟶ ℝ ) | 
						
							| 59 | 56 58 | sylibr | ⊢ ( 𝑥  ∈  dom  ∫1  →  𝑥  ∈  ( ℝ  ↑m  ℝ ) ) | 
						
							| 60 | 59 | ssriv | ⊢ dom  ∫1  ⊆  ( ℝ  ↑m  ℝ ) | 
						
							| 61 | 55 60 | ssexi | ⊢ dom  ∫1  ∈  V | 
						
							| 62 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 63 |  | breq1 | ⊢ ( 𝑓  =  ( 𝑔 ‘ 𝑛 )  →  ( 𝑓  ∘r   ≤  𝐹  ↔  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹 ) ) | 
						
							| 64 |  | fveq2 | ⊢ ( 𝑓  =  ( 𝑔 ‘ 𝑛 )  →  ( ∫1 ‘ 𝑓 )  =  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 65 | 64 | breq2d | ⊢ ( 𝑓  =  ( 𝑔 ‘ 𝑛 )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 )  ↔  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 66 | 63 65 | anbi12d | ⊢ ( 𝑓  =  ( 𝑔 ‘ 𝑛 )  →  ( ( 𝑓  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 ) )  ↔  ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) | 
						
							| 67 | 61 62 66 | axcc4 | ⊢ ( ∀ 𝑛  ∈  ℕ ∃ 𝑓  ∈  dom  ∫1 ( 𝑓  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ 𝑓 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) | 
						
							| 68 | 54 67 | syl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) ) | 
						
							| 69 |  | simprl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  𝑔 : ℕ ⟶ dom  ∫1 ) | 
						
							| 70 |  | simpl | ⊢ ( ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  →  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹 ) | 
						
							| 71 | 70 | ralimi | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹 ) | 
						
							| 72 | 71 | ad2antll | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹 ) | 
						
							| 73 | 10 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 74 |  | ffvelcdm | ⊢ ( ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  𝑛  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ∈  dom  ∫1 ) | 
						
							| 75 |  | itg1cl | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  dom  ∫1  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 77 | 76 | fmpttd | ⊢ ( 𝑔 : ℕ ⟶ dom  ∫1  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 78 | 77 | ad2antrl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 79 | 78 | frnd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ ) | 
						
							| 80 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 81 | 79 80 | sstrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 82 |  | supxrcl | ⊢ ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ*  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 84 | 38 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 85 | 76 | adantll | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 86 | 85 | rexrd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 87 |  | xrltle | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ*  ∧  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ℝ* )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 88 | 84 86 87 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) | 
						
							| 89 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  =  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 90 | 89 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 91 | 90 | rneqi | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 92 | 77 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 93 | 92 | frnd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ ) | 
						
							| 94 | 93 80 | sstrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ* ) | 
						
							| 96 | 91 95 | eqsstrrid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) )  ⊆  ℝ* ) | 
						
							| 97 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) )  =  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 98 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 99 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  V | 
						
							| 100 | 97 98 99 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 )  =  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 101 |  | fvex | ⊢ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) )  ∈  V | 
						
							| 102 | 101 98 | fnmpti | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) )  Fn  ℕ | 
						
							| 103 |  | fnfvelrn | ⊢ ( ( ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) )  Fn  ℕ  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 )  ∈  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) | 
						
							| 104 | 102 103 | mpan | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ‘ 𝑛 )  ∈  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) | 
						
							| 105 | 100 104 | eqeltrrd | ⊢ ( 𝑛  ∈  ℕ  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ) | 
						
							| 107 |  | supxrub | ⊢ ( ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) )  ⊆  ℝ*  ∧  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 108 | 96 106 107 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 109 | 91 | supeq1i | ⊢ sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 110 | 95 82 | syl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 111 | 109 110 | eqeltrrid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 112 |  | xrletr | ⊢ ( ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ*  ∧  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∈  ℝ*  ∧  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* )  →  ( ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∧  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 113 | 84 86 111 112 | syl3anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ∧  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 114 | 108 113 | mpan2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 115 | 88 114 | syld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 116 | 115 | adantld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 117 | 116 | ralimdva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  →  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 118 | 117 | impr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 119 |  | breq2 | ⊢ ( 𝑥  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  ↔  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 120 | 119 | ralbidv | ⊢ ( 𝑥  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  ↔  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 121 |  | breq2 | ⊢ ( 𝑥  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  →  ( ( ∫2 ‘ 𝐹 )  ≤  𝑥  ↔  ( ∫2 ‘ 𝐹 )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 122 | 120 121 | imbi12d | ⊢ ( 𝑥  =  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  →  ( ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 )  ↔  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  →  ( ∫2 ‘ 𝐹 )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) ) | 
						
							| 123 |  | elxr | ⊢ ( 𝑥  ∈  ℝ*  ↔  ( 𝑥  ∈  ℝ  ∨  𝑥  =  +∞  ∨  𝑥  =  -∞ ) ) | 
						
							| 124 |  | simplrl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 125 |  | arch | ⊢ ( 𝑥  ∈  ℝ  →  ∃ 𝑛  ∈  ℕ 𝑥  <  𝑛 ) | 
						
							| 126 | 124 125 | syl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  𝑛 ) | 
						
							| 127 | 4 | adantl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  =  𝑛 ) | 
						
							| 128 | 127 | breq2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  𝑥  <  𝑛 ) ) | 
						
							| 129 | 128 | rexbidv | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ∃ 𝑛  ∈  ℕ 𝑥  <  𝑛 ) ) | 
						
							| 130 | 126 129 | mpbird | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 131 | 26 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 132 |  | simplrl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 133 | 131 132 | resubcld | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ( ∫2 ‘ 𝐹 )  −  𝑥 )  ∈  ℝ ) | 
						
							| 134 |  | simplrr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  𝑥  <  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 135 | 132 131 | posdifd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( 𝑥  <  ( ∫2 ‘ 𝐹 )  ↔  0  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 ) ) ) | 
						
							| 136 | 134 135 | mpbid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  0  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 ) ) | 
						
							| 137 |  | nnrecl | ⊢ ( ( ( ( ∫2 ‘ 𝐹 )  −  𝑥 )  ∈  ℝ  ∧  0  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 ) )  →  ∃ 𝑛  ∈  ℕ ( 1  /  𝑛 )  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 ) ) | 
						
							| 138 | 133 136 137 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ∃ 𝑛  ∈  ℕ ( 1  /  𝑛 )  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 ) ) | 
						
							| 139 | 34 | adantl | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 140 | 131 | adantr | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 141 | 132 | adantr | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 142 |  | ltsub13 | ⊢ ( ( ( 1  /  𝑛 )  ∈  ℝ  ∧  ( ∫2 ‘ 𝐹 )  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 1  /  𝑛 )  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 )  ↔  𝑥  <  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 143 | 139 140 141 142 | syl3anc | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( ( 1  /  𝑛 )  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 )  ↔  𝑥  <  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 144 | 8 | ad2antlr | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  =  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) | 
						
							| 145 | 144 | breq2d | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  𝑥  <  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 146 | 143 145 | bitr4d | ⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  ∧  𝑛  ∈  ℕ )  →  ( ( 1  /  𝑛 )  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 )  ↔  𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 147 | 146 | rexbidva | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ( ∃ 𝑛  ∈  ℕ ( 1  /  𝑛 )  <  ( ( ∫2 ‘ 𝐹 )  −  𝑥 )  ↔  ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 148 | 138 147 | mpbid | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  ∧  ¬  ( ∫2 ‘ 𝐹 )  =  +∞ )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 149 | 130 148 | pm2.61dan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∧  𝑥  <  ( ∫2 ‘ 𝐹 ) ) )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 150 | 149 | expr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  <  ( ∫2 ‘ 𝐹 )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 151 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 152 |  | xrltnle | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( ∫2 ‘ 𝐹 )  ∈  ℝ* )  →  ( 𝑥  <  ( ∫2 ‘ 𝐹 )  ↔  ¬  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 153 | 151 10 152 | syl2anr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  <  ( ∫2 ‘ 𝐹 )  ↔  ¬  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 154 | 151 | ad2antlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ* ) | 
						
							| 155 | 38 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 156 |  | xrltnle | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* )  →  ( 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) ) | 
						
							| 157 | 154 155 156 | syl2anc | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) ) | 
						
							| 158 | 157 | rexbidva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ∃ 𝑛  ∈  ℕ ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) ) | 
						
							| 159 |  | rexnal | ⊢ ( ∃ 𝑛  ∈  ℕ ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  ↔  ¬  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 160 | 158 159 | bitrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑛  ∈  ℕ 𝑥  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ¬  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) ) | 
						
							| 161 | 150 153 160 | 3imtr3d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( ¬  ( ∫2 ‘ 𝐹 )  ≤  𝑥  →  ¬  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) ) | 
						
							| 162 | 161 | con4d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 163 | 10 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 164 |  | pnfge | ⊢ ( ( ∫2 ‘ 𝐹 )  ∈  ℝ*  →  ( ∫2 ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 165 | 163 164 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 166 |  | simpr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  +∞ )  →  𝑥  =  +∞ ) | 
						
							| 167 | 165 166 | breqtrrd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  +∞ )  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) | 
						
							| 168 | 167 | a1d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  +∞ )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 169 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 170 | 169 | ne0ii | ⊢ ℕ  ≠  ∅ | 
						
							| 171 |  | r19.2z | ⊢ ( ( ℕ  ≠  ∅  ∧  ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 )  →  ∃ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 172 | 170 171 | mpan | ⊢ ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ∃ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 173 | 37 | adantlr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  ∧  𝑛  ∈  ℕ )  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 174 |  | mnflt | ⊢ ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ  →  -∞  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) ) ) | 
						
							| 175 |  | rexr | ⊢ ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ  →  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 176 |  | xrltnle | ⊢ ( ( -∞  ∈  ℝ*  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ* )  →  ( -∞  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  -∞ ) ) | 
						
							| 177 | 15 175 176 | sylancr | ⊢ ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ  →  ( -∞  <  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ↔  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  -∞ ) ) | 
						
							| 178 | 174 177 | mpbid | ⊢ ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ∈  ℝ  →  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  -∞ ) | 
						
							| 179 | 173 178 | syl | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  ∧  𝑛  ∈  ℕ )  →  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  -∞ ) | 
						
							| 180 |  | simplr | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  ∧  𝑛  ∈  ℕ )  →  𝑥  =  -∞ ) | 
						
							| 181 | 180 | breq2d | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  ∧  𝑛  ∈  ℕ )  →  ( if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  ↔  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  -∞ ) ) | 
						
							| 182 | 179 181 | mtbird | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  ∧  𝑛  ∈  ℕ )  →  ¬  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 183 | 182 | nrexdv | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  →  ¬  ∃ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥 ) | 
						
							| 184 | 183 | pm2.21d | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  →  ( ∃ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 185 | 172 184 | syl5 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  =  -∞ )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 186 | 162 168 185 | 3jaodan | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ∨  𝑥  =  +∞  ∨  𝑥  =  -∞ ) )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 187 | 123 186 | sylan2b | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ* )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 188 | 187 | ralrimiva | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑥  ∈  ℝ* ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 189 | 188 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∀ 𝑥  ∈  ℝ* ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  𝑥  →  ( ∫2 ‘ 𝐹 )  ≤  𝑥 ) ) | 
						
							| 190 | 109 83 | eqeltrrid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 191 | 122 189 190 | rspcdva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( ∀ 𝑛  ∈  ℕ if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  )  →  ( ∫2 ‘ 𝐹 )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 192 | 118 191 | mpd | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( ∫2 ‘ 𝐹 )  ≤  sup ( ran  ( 𝑚  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 193 | 192 109 | breqtrrdi | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( ∫2 ‘ 𝐹 )  ≤  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 194 |  | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 ‘ 𝑛 )  ∈  dom  ∫1  ∧  ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹 )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 195 | 194 | 3expia | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 ‘ 𝑛 )  ∈  dom  ∫1 )  →  ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 196 | 74 195 | sylan2 | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 197 | 196 | anassrs | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 198 | 197 | adantrd | ⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  →  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 199 | 198 | ralimdva | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  𝑔 : ℕ ⟶ dom  ∫1 )  →  ( ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  →  ∀ 𝑛  ∈  ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 200 | 199 | impr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∀ 𝑛  ∈  ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 201 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 202 | 89 201 101 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 203 | 202 | breq1d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 204 | 203 | ralbiia | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑚  ∈  ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 205 | 89 | breq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 206 | 205 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑚  ∈  ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑚 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 207 | 204 206 | bitr4i | ⊢ ( ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑛  ∈  ℕ ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 208 | 200 207 | sylibr | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 209 |  | ffn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ  →  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  Fn  ℕ ) | 
						
							| 210 |  | breq1 | ⊢ ( 𝑧  =  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  →  ( 𝑧  ≤  ( ∫2 ‘ 𝐹 )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 211 | 210 | ralrn | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 212 | 78 209 211 | 3syl | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑚  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ‘ 𝑚 )  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 213 | 208 212 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 214 |  | supxrleub | ⊢ ( ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) )  ⊆  ℝ*  ∧  ( ∫2 ‘ 𝐹 )  ∈  ℝ* )  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 215 | 81 73 214 | syl2anc | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ≤  ( ∫2 ‘ 𝐹 )  ↔  ∀ 𝑧  ∈  ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) 𝑧  ≤  ( ∫2 ‘ 𝐹 ) ) ) | 
						
							| 216 | 213 215 | mpbird | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  )  ≤  ( ∫2 ‘ 𝐹 ) ) | 
						
							| 217 | 73 83 193 216 | xrletrid | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( ∫2 ‘ 𝐹 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 218 | 69 72 217 | 3jca | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ) )  →  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  ( ∫2 ‘ 𝐹 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 219 | 218 | ex | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) )  →  ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  ( ∫2 ‘ 𝐹 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) ) ) | 
						
							| 220 | 219 | eximdv | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  if ( ( ∫2 ‘ 𝐹 )  =  +∞ ,  𝑛 ,  ( ( ∫2 ‘ 𝐹 )  −  ( 1  /  𝑛 ) ) )  <  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  ( ∫2 ‘ 𝐹 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) ) ) | 
						
							| 221 | 68 220 | mpd | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom  ∫1  ∧  ∀ 𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∘r   ≤  𝐹  ∧  ( ∫2 ‘ 𝐹 )  =  sup ( ran  ( 𝑛  ∈  ℕ  ↦  ( ∫1 ‘ ( 𝑔 ‘ 𝑛 ) ) ) ,  ℝ* ,   <  ) ) ) |