Metamath Proof Explorer


Theorem 0ram

Description: The Ramsey number when M = 0 . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion 0ram RVRF:R0xyranFyx0RamseyF=supranF<

Proof

Step Hyp Ref Expression
1 eqid aV,i0b𝒫a|b=i=aV,i0b𝒫a|b=i
2 0nn0 00
3 2 a1i RVRF:R0xyranFyx00
4 simpl1 RVRF:R0xyranFyxRV
5 simpl3 RVRF:R0xyranFyxF:R0
6 5 frnd RVRF:R0xyranFyxranF0
7 nn0ssz 0
8 6 7 sstrdi RVRF:R0xyranFyxranF
9 5 fdmd RVRF:R0xyranFyxdomF=R
10 simpl2 RVRF:R0xyranFyxR
11 9 10 eqnetrd RVRF:R0xyranFyxdomF
12 dm0rn0 domF=ranF=
13 12 necon3bii domFranF
14 11 13 sylib RVRF:R0xyranFyxranF
15 simpr RVRF:R0xyranFyxxyranFyx
16 suprzcl2 ranFranFxyranFyxsupranF<ranF
17 8 14 15 16 syl3anc RVRF:R0xyranFyxsupranF<ranF
18 6 17 sseldd RVRF:R0xyranFyxsupranF<0
19 1 hashbc0 sVsaV,i0b𝒫a|b=i0=
20 19 elv saV,i0b𝒫a|b=i0=
21 20 feq2i f:saV,i0b𝒫a|b=i0Rf:R
22 21 biimpi f:saV,i0b𝒫a|b=i0Rf:R
23 simprr RVRF:R0xyranFyxsupranF<sf:Rf:R
24 0ex V
25 24 snid
26 ffvelcdm f:RfR
27 23 25 26 sylancl RVRF:R0xyranFyxsupranF<sf:RfR
28 vex sV
29 28 pwid s𝒫s
30 29 a1i RVRF:R0xyranFyxsupranF<sf:Rs𝒫s
31 5 adantr RVRF:R0xyranFyxsupranF<sf:RF:R0
32 31 27 ffvelcdmd RVRF:R0xyranFyxsupranF<sf:RFf0
33 32 nn0red RVRF:R0xyranFyxsupranF<sf:RFf
34 33 rexrd RVRF:R0xyranFyxsupranF<sf:RFf*
35 18 nn0red RVRF:R0xyranFyxsupranF<
36 35 rexrd RVRF:R0xyranFyxsupranF<*
37 36 adantr RVRF:R0xyranFyxsupranF<sf:RsupranF<*
38 hashxrcl sVs*
39 28 38 mp1i RVRF:R0xyranFyxsupranF<sf:Rs*
40 8 adantr RVRF:R0xyranFyxsupranF<sf:RranF
41 15 adantr RVRF:R0xyranFyxsupranF<sf:RxyranFyx
42 31 ffnd RVRF:R0xyranFyxsupranF<sf:RFFnR
43 fnfvelrn FFnRfRFfranF
44 42 27 43 syl2anc RVRF:R0xyranFyxsupranF<sf:RFfranF
45 suprzub ranFxyranFyxFfranFFfsupranF<
46 40 41 44 45 syl3anc RVRF:R0xyranFyxsupranF<sf:RFfsupranF<
47 simprl RVRF:R0xyranFyxsupranF<sf:RsupranF<s
48 34 37 39 46 47 xrletrd RVRF:R0xyranFyxsupranF<sf:RFfs
49 25 a1i RVRF:R0xyranFyxsupranF<sf:R
50 fvex fV
51 50 snid ff
52 51 a1i RVRF:R0xyranFyxsupranF<sf:Rff
53 ffn f:RfFn
54 elpreima fFnf-1fff
55 23 53 54 3syl RVRF:R0xyranFyxsupranF<sf:Rf-1fff
56 49 52 55 mpbir2and RVRF:R0xyranFyxsupranF<sf:Rf-1f
57 fveq2 c=fFc=Ff
58 57 breq1d c=fFczFfz
59 1 hashbc0 zVzaV,i0b𝒫a|b=i0=
60 59 elv zaV,i0b𝒫a|b=i0=
61 60 sseq1i zaV,i0b𝒫a|b=i0f-1cf-1c
62 24 snss f-1cf-1c
63 61 62 bitr4i zaV,i0b𝒫a|b=i0f-1cf-1c
64 sneq c=fc=f
65 64 imaeq2d c=ff-1c=f-1f
66 65 eleq2d c=ff-1cf-1f
67 63 66 bitrid c=fzaV,i0b𝒫a|b=i0f-1cf-1f
68 58 67 anbi12d c=fFczzaV,i0b𝒫a|b=i0f-1cFfzf-1f
69 fveq2 z=sz=s
70 69 breq2d z=sFfzFfs
71 70 anbi1d z=sFfzf-1fFfsf-1f
72 68 71 rspc2ev fRs𝒫sFfsf-1fcRz𝒫sFczzaV,i0b𝒫a|b=i0f-1c
73 27 30 48 56 72 syl112anc RVRF:R0xyranFyxsupranF<sf:RcRz𝒫sFczzaV,i0b𝒫a|b=i0f-1c
74 22 73 sylanr2 RVRF:R0xyranFyxsupranF<sf:saV,i0b𝒫a|b=i0RcRz𝒫sFczzaV,i0b𝒫a|b=i0f-1c
75 1 3 4 5 18 74 ramub RVRF:R0xyranFyx0RamseyFsupranF<
76 ffn F:R0FFnR
77 fvelrnb FFnRsupranF<ranFcRFc=supranF<
78 5 76 77 3syl RVRF:R0xyranFyxsupranF<ranFcRFc=supranF<
79 17 78 mpbid RVRF:R0xyranFyxcRFc=supranF<
80 2 a1i RVRF:R0xyranFyxcRFc00
81 simpll1 RVRF:R0xyranFyxcRFcRV
82 simpll3 RVRF:R0xyranFyxcRFcF:R0
83 nnm1nn0 FcFc10
84 83 ad2antll RVRF:R0xyranFyxcRFcFc10
85 vex cV
86 24 85 f1osn c:1-1 ontoc
87 f1of c:1-1 ontocc:c
88 86 87 ax-mp c:c
89 simprl RVRF:R0xyranFyxcRFccR
90 89 snssd RVRF:R0xyranFyxcRFccR
91 fss c:ccRc:R
92 88 90 91 sylancr RVRF:R0xyranFyxcRFcc:R
93 ovex 1Fc1V
94 1 hashbc0 1Fc1V1Fc1aV,i0b𝒫a|b=i0=
95 93 94 ax-mp 1Fc1aV,i0b𝒫a|b=i0=
96 95 feq2i c:1Fc1aV,i0b𝒫a|b=i0Rc:R
97 92 96 sylibr RVRF:R0xyranFyxcRFcc:1Fc1aV,i0b𝒫a|b=i0R
98 60 sseq1i zaV,i0b𝒫a|b=i0c-1dc-1d
99 24 snss c-1dc-1d
100 98 99 bitr4i zaV,i0b𝒫a|b=i0c-1dc-1d
101 fzfid RVRF:R0xyranFyxcRFcdRz1Fc11Fc1Fin
102 simprr RVRF:R0xyranFyxcRFcdRz1Fc1z1Fc1
103 ssdomg 1Fc1Finz1Fc1z1Fc1
104 101 102 103 sylc RVRF:R0xyranFyxcRFcdRz1Fc1z1Fc1
105 101 102 ssfid RVRF:R0xyranFyxcRFcdRz1Fc1zFin
106 hashdom zFin1Fc1Finz1Fc1z1Fc1
107 105 101 106 syl2anc RVRF:R0xyranFyxcRFcdRz1Fc1z1Fc1z1Fc1
108 104 107 mpbird RVRF:R0xyranFyxcRFcdRz1Fc1z1Fc1
109 84 adantr RVRF:R0xyranFyxcRFcdRz1Fc1Fc10
110 hashfz1 Fc101Fc1=Fc1
111 109 110 syl RVRF:R0xyranFyxcRFcdRz1Fc11Fc1=Fc1
112 108 111 breqtrd RVRF:R0xyranFyxcRFcdRz1Fc1zFc1
113 hashcl zFinz0
114 105 113 syl RVRF:R0xyranFyxcRFcdRz1Fc1z0
115 5 ffvelcdmda RVRF:R0xyranFyxcRFc0
116 115 adantrr RVRF:R0xyranFyxcRFcFc0
117 116 adantr RVRF:R0xyranFyxcRFcdRz1Fc1Fc0
118 nn0ltlem1 z0Fc0z<FczFc1
119 114 117 118 syl2anc RVRF:R0xyranFyxcRFcdRz1Fc1z<FczFc1
120 112 119 mpbird RVRF:R0xyranFyxcRFcdRz1Fc1z<Fc
121 24 85 fvsn c=c
122 f1ofn c:1-1 ontoccFn
123 elpreima cFnc-1dcd
124 86 122 123 mp2b c-1dcd
125 124 simprbi c-1dcd
126 121 125 eqeltrrid c-1dcd
127 elsni cdc=d
128 126 127 syl c-1dc=d
129 128 fveq2d c-1dFc=Fd
130 129 breq2d c-1dz<Fcz<Fd
131 120 130 syl5ibcom RVRF:R0xyranFyxcRFcdRz1Fc1c-1dz<Fd
132 100 131 biimtrid RVRF:R0xyranFyxcRFcdRz1Fc1zaV,i0b𝒫a|b=i0c-1dz<Fd
133 1 80 81 82 84 97 132 ramlb RVRF:R0xyranFyxcRFcFc1<0RamseyF
134 ramubcl 00RVF:R0supranF<00RamseyFsupranF<0RamseyF0
135 3 4 5 18 75 134 syl32anc RVRF:R0xyranFyx0RamseyF0
136 135 adantr RVRF:R0xyranFyxcRFc0RamseyF0
137 nn0lem1lt Fc00RamseyF0Fc0RamseyFFc1<0RamseyF
138 116 136 137 syl2anc RVRF:R0xyranFyxcRFcFc0RamseyFFc1<0RamseyF
139 133 138 mpbird RVRF:R0xyranFyxcRFcFc0RamseyF
140 139 expr RVRF:R0xyranFyxcRFcFc0RamseyF
141 135 adantr RVRF:R0xyranFyxcR0RamseyF0
142 141 nn0ge0d RVRF:R0xyranFyxcR00RamseyF
143 breq1 Fc=0Fc0RamseyF00RamseyF
144 142 143 syl5ibrcom RVRF:R0xyranFyxcRFc=0Fc0RamseyF
145 elnn0 Fc0FcFc=0
146 115 145 sylib RVRF:R0xyranFyxcRFcFc=0
147 140 144 146 mpjaod RVRF:R0xyranFyxcRFc0RamseyF
148 breq1 Fc=supranF<Fc0RamseyFsupranF<0RamseyF
149 147 148 syl5ibcom RVRF:R0xyranFyxcRFc=supranF<supranF<0RamseyF
150 149 rexlimdva RVRF:R0xyranFyxcRFc=supranF<supranF<0RamseyF
151 79 150 mpd RVRF:R0xyranFyxsupranF<0RamseyF
152 135 nn0red RVRF:R0xyranFyx0RamseyF
153 152 35 letri3d RVRF:R0xyranFyx0RamseyF=supranF<0RamseyFsupranF<supranF<0RamseyF
154 75 151 153 mpbir2and RVRF:R0xyranFyx0RamseyF=supranF<