Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Ramsey's theorem
0ram
Next ⟩
0ram2
Metamath Proof Explorer
Ascii
Unicode
Theorem
0ram
Description:
The Ramsey number when
M = 0
.
(Contributed by
Mario Carneiro
, 22-Apr-2015)
Ref
Expression
Assertion
0ram
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
Ramsey
F
=
sup
ran
F
ℝ
<
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
=
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
2
0nn0
⊢
0
∈
ℕ
0
3
2
a1i
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
∈
ℕ
0
4
simpl1
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
R
∈
V
5
simpl3
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
F
:
R
⟶
ℕ
0
6
5
frnd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
ran
F
⊆
ℕ
0
7
nn0ssz
⊢
ℕ
0
⊆
ℤ
8
6
7
sstrdi
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
ran
F
⊆
ℤ
9
5
fdmd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
dom
F
=
R
10
simpl2
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
R
≠
∅
11
9
10
eqnetrd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
dom
F
≠
∅
12
dm0rn0
⊢
dom
F
=
∅
↔
ran
F
=
∅
13
12
necon3bii
⊢
dom
F
≠
∅
↔
ran
F
≠
∅
14
11
13
sylib
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
ran
F
≠
∅
15
simpr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
16
suprzcl2
⊢
ran
F
⊆
ℤ
∧
ran
F
≠
∅
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
∈
ran
F
17
8
14
15
16
syl3anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
∈
ran
F
18
6
17
sseldd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
∈
ℕ
0
19
1
hashbc0
⊢
s
∈
V
→
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
=
∅
20
19
elv
⊢
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
=
∅
21
20
feq2i
⊢
f
:
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⟶
R
↔
f
:
∅
⟶
R
22
21
biimpi
⊢
f
:
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⟶
R
→
f
:
∅
⟶
R
23
simprr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
f
:
∅
⟶
R
24
0ex
⊢
∅
∈
V
25
24
snid
⊢
∅
∈
∅
26
ffvelcdm
⊢
f
:
∅
⟶
R
∧
∅
∈
∅
→
f
∅
∈
R
27
23
25
26
sylancl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
f
∅
∈
R
28
vex
⊢
s
∈
V
29
28
pwid
⊢
s
∈
𝒫
s
30
29
a1i
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
s
∈
𝒫
s
31
5
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
:
R
⟶
ℕ
0
32
31
27
ffvelcdmd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
f
∅
∈
ℕ
0
33
32
nn0red
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
f
∅
∈
ℝ
34
33
rexrd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
f
∅
∈
ℝ
*
35
18
nn0red
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
∈
ℝ
36
35
rexrd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
∈
ℝ
*
37
36
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
sup
ran
F
ℝ
<
∈
ℝ
*
38
hashxrcl
⊢
s
∈
V
→
s
∈
ℝ
*
39
28
38
mp1i
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
s
∈
ℝ
*
40
8
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
ran
F
⊆
ℤ
41
15
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
42
31
ffnd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
Fn
R
43
fnfvelrn
⊢
F
Fn
R
∧
f
∅
∈
R
→
F
f
∅
∈
ran
F
44
42
27
43
syl2anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
f
∅
∈
ran
F
45
suprzub
⊢
ran
F
⊆
ℤ
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
F
f
∅
∈
ran
F
→
F
f
∅
≤
sup
ran
F
ℝ
<
46
40
41
44
45
syl3anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
f
∅
≤
sup
ran
F
ℝ
<
47
simprl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
sup
ran
F
ℝ
<
≤
s
48
34
37
39
46
47
xrletrd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
F
f
∅
≤
s
49
25
a1i
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
∅
∈
∅
50
fvex
⊢
f
∅
∈
V
51
50
snid
⊢
f
∅
∈
f
∅
52
51
a1i
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
f
∅
∈
f
∅
53
ffn
⊢
f
:
∅
⟶
R
→
f
Fn
∅
54
elpreima
⊢
f
Fn
∅
→
∅
∈
f
-1
f
∅
↔
∅
∈
∅
∧
f
∅
∈
f
∅
55
23
53
54
3syl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
∅
∈
f
-1
f
∅
↔
∅
∈
∅
∧
f
∅
∈
f
∅
56
49
52
55
mpbir2and
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
∅
∈
f
-1
f
∅
57
fveq2
⊢
c
=
f
∅
→
F
c
=
F
f
∅
58
57
breq1d
⊢
c
=
f
∅
→
F
c
≤
z
↔
F
f
∅
≤
z
59
1
hashbc0
⊢
z
∈
V
→
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
=
∅
60
59
elv
⊢
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
=
∅
61
60
sseq1i
⊢
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
↔
∅
⊆
f
-1
c
62
24
snss
⊢
∅
∈
f
-1
c
↔
∅
⊆
f
-1
c
63
61
62
bitr4i
⊢
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
↔
∅
∈
f
-1
c
64
sneq
⊢
c
=
f
∅
→
c
=
f
∅
65
64
imaeq2d
⊢
c
=
f
∅
→
f
-1
c
=
f
-1
f
∅
66
65
eleq2d
⊢
c
=
f
∅
→
∅
∈
f
-1
c
↔
∅
∈
f
-1
f
∅
67
63
66
bitrid
⊢
c
=
f
∅
→
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
↔
∅
∈
f
-1
f
∅
68
58
67
anbi12d
⊢
c
=
f
∅
→
F
c
≤
z
∧
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
↔
F
f
∅
≤
z
∧
∅
∈
f
-1
f
∅
69
fveq2
⊢
z
=
s
→
z
=
s
70
69
breq2d
⊢
z
=
s
→
F
f
∅
≤
z
↔
F
f
∅
≤
s
71
70
anbi1d
⊢
z
=
s
→
F
f
∅
≤
z
∧
∅
∈
f
-1
f
∅
↔
F
f
∅
≤
s
∧
∅
∈
f
-1
f
∅
72
68
71
rspc2ev
⊢
f
∅
∈
R
∧
s
∈
𝒫
s
∧
F
f
∅
≤
s
∧
∅
∈
f
-1
f
∅
→
∃
c
∈
R
∃
z
∈
𝒫
s
F
c
≤
z
∧
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
73
27
30
48
56
72
syl112anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
∅
⟶
R
→
∃
c
∈
R
∃
z
∈
𝒫
s
F
c
≤
z
∧
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
74
22
73
sylanr2
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
sup
ran
F
ℝ
<
≤
s
∧
f
:
s
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⟶
R
→
∃
c
∈
R
∃
z
∈
𝒫
s
F
c
≤
z
∧
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
f
-1
c
75
1
3
4
5
18
74
ramub
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
Ramsey
F
≤
sup
ran
F
ℝ
<
76
ffn
⊢
F
:
R
⟶
ℕ
0
→
F
Fn
R
77
fvelrnb
⊢
F
Fn
R
→
sup
ran
F
ℝ
<
∈
ran
F
↔
∃
c
∈
R
F
c
=
sup
ran
F
ℝ
<
78
5
76
77
3syl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
∈
ran
F
↔
∃
c
∈
R
F
c
=
sup
ran
F
ℝ
<
79
17
78
mpbid
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
∃
c
∈
R
F
c
=
sup
ran
F
ℝ
<
80
2
a1i
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
0
∈
ℕ
0
81
simpll1
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
R
∈
V
82
simpll3
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
F
:
R
⟶
ℕ
0
83
nnm1nn0
⊢
F
c
∈
ℕ
→
F
c
−
1
∈
ℕ
0
84
83
ad2antll
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
F
c
−
1
∈
ℕ
0
85
vex
⊢
c
∈
V
86
24
85
f1osn
⊢
∅
c
:
∅
⟶
1-1 onto
c
87
f1of
⊢
∅
c
:
∅
⟶
1-1 onto
c
→
∅
c
:
∅
⟶
c
88
86
87
ax-mp
⊢
∅
c
:
∅
⟶
c
89
simprl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
c
∈
R
90
89
snssd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
c
⊆
R
91
fss
⊢
∅
c
:
∅
⟶
c
∧
c
⊆
R
→
∅
c
:
∅
⟶
R
92
88
90
91
sylancr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
∅
c
:
∅
⟶
R
93
ovex
⊢
1
…
F
c
−
1
∈
V
94
1
hashbc0
⊢
1
…
F
c
−
1
∈
V
→
1
…
F
c
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
=
∅
95
93
94
ax-mp
⊢
1
…
F
c
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
=
∅
96
95
feq2i
⊢
∅
c
:
1
…
F
c
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⟶
R
↔
∅
c
:
∅
⟶
R
97
92
96
sylibr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
∅
c
:
1
…
F
c
−
1
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⟶
R
98
60
sseq1i
⊢
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
∅
c
-1
d
↔
∅
⊆
∅
c
-1
d
99
24
snss
⊢
∅
∈
∅
c
-1
d
↔
∅
⊆
∅
c
-1
d
100
98
99
bitr4i
⊢
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
∅
c
-1
d
↔
∅
∈
∅
c
-1
d
101
fzfid
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
1
…
F
c
−
1
∈
Fin
102
simprr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
⊆
1
…
F
c
−
1
103
ssdomg
⊢
1
…
F
c
−
1
∈
Fin
→
z
⊆
1
…
F
c
−
1
→
z
≼
1
…
F
c
−
1
104
101
102
103
sylc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
≼
1
…
F
c
−
1
105
101
102
ssfid
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
∈
Fin
106
hashdom
⊢
z
∈
Fin
∧
1
…
F
c
−
1
∈
Fin
→
z
≤
1
…
F
c
−
1
↔
z
≼
1
…
F
c
−
1
107
105
101
106
syl2anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
≤
1
…
F
c
−
1
↔
z
≼
1
…
F
c
−
1
108
104
107
mpbird
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
≤
1
…
F
c
−
1
109
84
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
F
c
−
1
∈
ℕ
0
110
hashfz1
⊢
F
c
−
1
∈
ℕ
0
→
1
…
F
c
−
1
=
F
c
−
1
111
109
110
syl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
1
…
F
c
−
1
=
F
c
−
1
112
108
111
breqtrd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
≤
F
c
−
1
113
hashcl
⊢
z
∈
Fin
→
z
∈
ℕ
0
114
105
113
syl
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
∈
ℕ
0
115
5
ffvelcdmda
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
F
c
∈
ℕ
0
116
115
adantrr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
F
c
∈
ℕ
0
117
116
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
F
c
∈
ℕ
0
118
nn0ltlem1
⊢
z
∈
ℕ
0
∧
F
c
∈
ℕ
0
→
z
<
F
c
↔
z
≤
F
c
−
1
119
114
117
118
syl2anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
<
F
c
↔
z
≤
F
c
−
1
120
112
119
mpbird
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
<
F
c
121
24
85
fvsn
⊢
∅
c
∅
=
c
122
f1ofn
⊢
∅
c
:
∅
⟶
1-1 onto
c
→
∅
c
Fn
∅
123
elpreima
⊢
∅
c
Fn
∅
→
∅
∈
∅
c
-1
d
↔
∅
∈
∅
∧
∅
c
∅
∈
d
124
86
122
123
mp2b
⊢
∅
∈
∅
c
-1
d
↔
∅
∈
∅
∧
∅
c
∅
∈
d
125
124
simprbi
⊢
∅
∈
∅
c
-1
d
→
∅
c
∅
∈
d
126
121
125
eqeltrrid
⊢
∅
∈
∅
c
-1
d
→
c
∈
d
127
elsni
⊢
c
∈
d
→
c
=
d
128
126
127
syl
⊢
∅
∈
∅
c
-1
d
→
c
=
d
129
128
fveq2d
⊢
∅
∈
∅
c
-1
d
→
F
c
=
F
d
130
129
breq2d
⊢
∅
∈
∅
c
-1
d
→
z
<
F
c
↔
z
<
F
d
131
120
130
syl5ibcom
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
∅
∈
∅
c
-1
d
→
z
<
F
d
132
100
131
biimtrid
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
∧
d
∈
R
∧
z
⊆
1
…
F
c
−
1
→
z
a
∈
V
,
i
∈
ℕ
0
⟼
b
∈
𝒫
a
|
b
=
i
0
⊆
∅
c
-1
d
→
z
<
F
d
133
1
80
81
82
84
97
132
ramlb
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
F
c
−
1
<
0
Ramsey
F
134
ramubcl
⊢
0
∈
ℕ
0
∧
R
∈
V
∧
F
:
R
⟶
ℕ
0
∧
sup
ran
F
ℝ
<
∈
ℕ
0
∧
0
Ramsey
F
≤
sup
ran
F
ℝ
<
→
0
Ramsey
F
∈
ℕ
0
135
3
4
5
18
75
134
syl32anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
Ramsey
F
∈
ℕ
0
136
135
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
0
Ramsey
F
∈
ℕ
0
137
nn0lem1lt
⊢
F
c
∈
ℕ
0
∧
0
Ramsey
F
∈
ℕ
0
→
F
c
≤
0
Ramsey
F
↔
F
c
−
1
<
0
Ramsey
F
138
116
136
137
syl2anc
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
F
c
≤
0
Ramsey
F
↔
F
c
−
1
<
0
Ramsey
F
139
133
138
mpbird
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
∧
F
c
∈
ℕ
→
F
c
≤
0
Ramsey
F
140
139
expr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
F
c
∈
ℕ
→
F
c
≤
0
Ramsey
F
141
135
adantr
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
0
Ramsey
F
∈
ℕ
0
142
141
nn0ge0d
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
0
≤
0
Ramsey
F
143
breq1
⊢
F
c
=
0
→
F
c
≤
0
Ramsey
F
↔
0
≤
0
Ramsey
F
144
142
143
syl5ibrcom
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
F
c
=
0
→
F
c
≤
0
Ramsey
F
145
elnn0
⊢
F
c
∈
ℕ
0
↔
F
c
∈
ℕ
∨
F
c
=
0
146
115
145
sylib
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
F
c
∈
ℕ
∨
F
c
=
0
147
140
144
146
mpjaod
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
F
c
≤
0
Ramsey
F
148
breq1
⊢
F
c
=
sup
ran
F
ℝ
<
→
F
c
≤
0
Ramsey
F
↔
sup
ran
F
ℝ
<
≤
0
Ramsey
F
149
147
148
syl5ibcom
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
∧
c
∈
R
→
F
c
=
sup
ran
F
ℝ
<
→
sup
ran
F
ℝ
<
≤
0
Ramsey
F
150
149
rexlimdva
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
∃
c
∈
R
F
c
=
sup
ran
F
ℝ
<
→
sup
ran
F
ℝ
<
≤
0
Ramsey
F
151
79
150
mpd
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
sup
ran
F
ℝ
<
≤
0
Ramsey
F
152
135
nn0red
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
Ramsey
F
∈
ℝ
153
152
35
letri3d
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
Ramsey
F
=
sup
ran
F
ℝ
<
↔
0
Ramsey
F
≤
sup
ran
F
ℝ
<
∧
sup
ran
F
ℝ
<
≤
0
Ramsey
F
154
75
151
153
mpbir2and
⊢
R
∈
V
∧
R
≠
∅
∧
F
:
R
⟶
ℕ
0
∧
∃
x
∈
ℤ
∀
y
∈
ran
F
y
≤
x
→
0
Ramsey
F
=
sup
ran
F
ℝ
<