| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arith.1 |
|
| 2 |
|
1arith.2 |
|
| 3 |
|
prmex |
|
| 4 |
3
|
mptex |
|
| 5 |
4 1
|
fnmpti |
|
| 6 |
1
|
1arithlem3 |
|
| 7 |
|
nn0ex |
|
| 8 |
7 3
|
elmap |
|
| 9 |
6 8
|
sylibr |
|
| 10 |
|
fzfi |
|
| 11 |
|
ffn |
|
| 12 |
|
elpreima |
|
| 13 |
6 11 12
|
3syl |
|
| 14 |
1
|
1arithlem2 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
|
prmz |
|
| 17 |
|
id |
|
| 18 |
|
dvdsle |
|
| 19 |
16 17 18
|
syl2anr |
|
| 20 |
|
pcelnn |
|
| 21 |
20
|
ancoms |
|
| 22 |
|
prmnn |
|
| 23 |
|
nnuz |
|
| 24 |
22 23
|
eleqtrdi |
|
| 25 |
|
nnz |
|
| 26 |
|
elfz5 |
|
| 27 |
24 25 26
|
syl2anr |
|
| 28 |
19 21 27
|
3imtr4d |
|
| 29 |
15 28
|
sylbid |
|
| 30 |
29
|
expimpd |
|
| 31 |
13 30
|
sylbid |
|
| 32 |
31
|
ssrdv |
|
| 33 |
|
ssfi |
|
| 34 |
10 32 33
|
sylancr |
|
| 35 |
|
cnveq |
|
| 36 |
35
|
imaeq1d |
|
| 37 |
36
|
eleq1d |
|
| 38 |
37 2
|
elrab2 |
|
| 39 |
9 34 38
|
sylanbrc |
|
| 40 |
39
|
rgen |
|
| 41 |
|
ffnfv |
|
| 42 |
5 40 41
|
mpbir2an |
|
| 43 |
14
|
adantlr |
|
| 44 |
1
|
1arithlem2 |
|
| 45 |
44
|
adantll |
|
| 46 |
43 45
|
eqeq12d |
|
| 47 |
46
|
ralbidva |
|
| 48 |
1
|
1arithlem3 |
|
| 49 |
|
ffn |
|
| 50 |
|
eqfnfv |
|
| 51 |
11 49 50
|
syl2an |
|
| 52 |
6 48 51
|
syl2an |
|
| 53 |
|
nnnn0 |
|
| 54 |
|
nnnn0 |
|
| 55 |
|
pc11 |
|
| 56 |
53 54 55
|
syl2an |
|
| 57 |
47 52 56
|
3bitr4d |
|
| 58 |
57
|
biimpd |
|
| 59 |
58
|
rgen2 |
|
| 60 |
|
dff13 |
|
| 61 |
42 59 60
|
mpbir2an |
|
| 62 |
|
eqid |
|
| 63 |
|
cnveq |
|
| 64 |
63
|
imaeq1d |
|
| 65 |
64
|
eleq1d |
|
| 66 |
65 2
|
elrab2 |
|
| 67 |
66
|
simplbi |
|
| 68 |
7 3
|
elmap |
|
| 69 |
67 68
|
sylib |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
|
simplr |
|
| 72 |
|
0re |
|
| 73 |
|
ifcl |
|
| 74 |
71 72 73
|
sylancl |
|
| 75 |
|
max1 |
|
| 76 |
72 71 75
|
sylancr |
|
| 77 |
|
flge0nn0 |
|
| 78 |
74 76 77
|
syl2anc |
|
| 79 |
|
nn0p1nn |
|
| 80 |
78 79
|
syl |
|
| 81 |
71
|
adantr |
|
| 82 |
80
|
adantr |
|
| 83 |
82
|
nnred |
|
| 84 |
16
|
ssriv |
|
| 85 |
|
zssre |
|
| 86 |
84 85
|
sstri |
|
| 87 |
|
simprl |
|
| 88 |
86 87
|
sselid |
|
| 89 |
74
|
adantr |
|
| 90 |
|
max2 |
|
| 91 |
72 81 90
|
sylancr |
|
| 92 |
|
flltp1 |
|
| 93 |
89 92
|
syl |
|
| 94 |
81 89 83 91 93
|
lelttrd |
|
| 95 |
|
simprr |
|
| 96 |
81 83 88 94 95
|
ltletrd |
|
| 97 |
81 88
|
ltnled |
|
| 98 |
96 97
|
mpbid |
|
| 99 |
87
|
biantrurd |
|
| 100 |
70
|
adantr |
|
| 101 |
|
ffn |
|
| 102 |
|
elpreima |
|
| 103 |
100 101 102
|
3syl |
|
| 104 |
99 103
|
bitr4d |
|
| 105 |
|
simplr |
|
| 106 |
|
breq1 |
|
| 107 |
106
|
rspccv |
|
| 108 |
105 107
|
syl |
|
| 109 |
104 108
|
sylbid |
|
| 110 |
98 109
|
mtod |
|
| 111 |
100 87
|
ffvelcdmd |
|
| 112 |
|
elnn0 |
|
| 113 |
111 112
|
sylib |
|
| 114 |
113
|
ord |
|
| 115 |
110 114
|
mpd |
|
| 116 |
1 62 70 80 115
|
1arithlem4 |
|
| 117 |
|
cnvimass |
|
| 118 |
69
|
fdmd |
|
| 119 |
118 86
|
eqsstrdi |
|
| 120 |
117 119
|
sstrid |
|
| 121 |
66
|
simprbi |
|
| 122 |
|
fimaxre2 |
|
| 123 |
120 121 122
|
syl2anc |
|
| 124 |
116 123
|
r19.29a |
|
| 125 |
124
|
rgen |
|
| 126 |
|
dffo3 |
|
| 127 |
42 125 126
|
mpbir2an |
|
| 128 |
|
df-f1o |
|
| 129 |
61 127 128
|
mpbir2an |
|