Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
|
2 |
|
1arithufd.0 |
|
3 |
|
1arithufd.u |
|
4 |
|
1arithufd.p |
|
5 |
|
1arithufd.m |
|
6 |
|
1arithufd.r |
|
7 |
|
1arithufdlem.2 |
|
8 |
|
1arithufdlem.s |
|
9 |
|
1arithufdlem.3 |
|
10 |
|
1arithufdlem.4 |
|
11 |
|
1arithufdlem.5 |
|
12 |
|
eqeq1 |
|
13 |
12
|
rexbidv |
|
14 |
|
eqcom |
|
15 |
14
|
rexbii |
|
16 |
13 15
|
bitrdi |
|
17 |
6
|
adantr |
|
18 |
|
simpr |
|
19 |
1 4 17 18
|
rprmcl |
|
20 |
|
oveq2 |
|
21 |
20
|
eqeq1d |
|
22 |
18
|
s1cld |
|
23 |
5 1
|
mgpbas |
|
24 |
23
|
gsumws1 |
|
25 |
19 24
|
syl |
|
26 |
21 22 25
|
rspcedvdw |
|
27 |
16 19 26
|
elrabd |
|
28 |
27 8
|
eleqtrrdi |
|
29 |
28
|
ex |
|
30 |
29
|
ssrdv |
|
31 |
30
|
adantr |
|
32 |
|
anass |
|
33 |
|
ineq2 |
|
34 |
33
|
eqeq1d |
|
35 |
|
sseq2 |
|
36 |
34 35
|
anbi12d |
|
37 |
36
|
elrab |
|
38 |
37
|
anbi2i |
|
39 |
32 38
|
bitr4i |
|
40 |
39
|
anbi1i |
|
41 |
|
incom |
|
42 |
|
simpllr |
|
43 |
42
|
simpld |
|
44 |
41 43
|
eqtrid |
|
45 |
6
|
ad5antr |
|
46 |
|
simplr |
|
47 |
42
|
simprd |
|
48 |
6
|
ufdidom |
|
49 |
48
|
idomringd |
|
50 |
|
eqid |
|
51 |
1 50
|
rspsnid |
|
52 |
49 9 51
|
syl2anc |
|
53 |
52
|
ad5antr |
|
54 |
47 53
|
sseldd |
|
55 |
|
nelsn |
|
56 |
11 55
|
syl |
|
57 |
56
|
ad5antr |
|
58 |
|
nelne1 |
|
59 |
54 57 58
|
syl2anc |
|
60 |
46 59
|
eldifsnd |
|
61 |
|
ineq1 |
|
62 |
61
|
neeq1d |
|
63 |
|
eqid |
|
64 |
63 4 2
|
isufd |
|
65 |
64
|
simprbi |
|
66 |
65
|
adantr |
|
67 |
|
simpr |
|
68 |
62 66 67
|
rspcdva |
|
69 |
45 60 68
|
syl2anc |
|
70 |
|
sseq0 |
|
71 |
70
|
expcom |
|
72 |
71
|
necon3ad |
|
73 |
|
sslin |
|
74 |
73
|
con3i |
|
75 |
72 74
|
syl6 |
|
76 |
44 69 75
|
sylc |
|
77 |
40 76
|
sylanbr |
|
78 |
77
|
anasss |
|
79 |
48
|
idomcringd |
|
80 |
79
|
adantr |
|
81 |
49
|
adantr |
|
82 |
9
|
adantr |
|
83 |
82
|
snssd |
|
84 |
|
eqid |
|
85 |
50 1 84
|
rspcl |
|
86 |
81 83 85
|
syl2anc |
|
87 |
5
|
ringmgp |
|
88 |
49 87
|
syl |
|
89 |
8
|
ssrab3 |
|
90 |
89
|
a1i |
|
91 |
|
eqeq1 |
|
92 |
91
|
rexbidv |
|
93 |
|
eqcom |
|
94 |
93
|
rexbii |
|
95 |
92 94
|
bitrdi |
|
96 |
|
eqid |
|
97 |
1 96
|
ringidcl |
|
98 |
49 97
|
syl |
|
99 |
|
oveq2 |
|
100 |
99
|
eqeq1d |
|
101 |
|
wrd0 |
|
102 |
101
|
a1i |
|
103 |
5 96
|
ringidval |
|
104 |
103
|
gsum0 |
|
105 |
104
|
a1i |
|
106 |
100 102 105
|
rspcedvdw |
|
107 |
95 98 106
|
elrabd |
|
108 |
107 8
|
eleqtrrdi |
|
109 |
6
|
ad2antrr |
|
110 |
7
|
ad2antrr |
|
111 |
|
eqid |
|
112 |
|
simplr |
|
113 |
|
simpr |
|
114 |
1 2 3 4 5 109 110 8 111 112 113
|
1arithufdlem2 |
|
115 |
114
|
anasss |
|
116 |
115
|
ralrimivva |
|
117 |
5 111
|
mgpplusg |
|
118 |
23 103 117
|
issubm |
|
119 |
118
|
biimpar |
|
120 |
88 90 108 116 119
|
syl13anc |
|
121 |
120
|
adantr |
|
122 |
|
neq0 |
|
123 |
122
|
biimpi |
|
124 |
123
|
adantl |
|
125 |
6
|
ad4antr |
|
126 |
7
|
ad4antr |
|
127 |
9
|
ad4antr |
|
128 |
10
|
ad4antr |
|
129 |
11
|
ad4antr |
|
130 |
|
simplr |
|
131 |
|
simpr |
|
132 |
|
simpllr |
|
133 |
132
|
elin1d |
|
134 |
131 133
|
eqeltrrd |
|
135 |
1 2 3 4 5 125 126 8 127 128 129 111 130 134
|
1arithufdlem3 |
|
136 |
49
|
ad2antrr |
|
137 |
9
|
ad2antrr |
|
138 |
|
simpr |
|
139 |
138
|
elin2d |
|
140 |
1 111 50
|
elrspsn |
|
141 |
140
|
biimpa |
|
142 |
136 137 139 141
|
syl21anc |
|
143 |
135 142
|
r19.29a |
|
144 |
124 143
|
exlimddv |
|
145 |
144
|
adantlr |
|
146 |
|
simplr |
|
147 |
145 146
|
condan |
|
148 |
|
eqid |
|
149 |
1 80 86 121 5 147 148
|
ssdifidlprm |
|
150 |
78 149
|
r19.29a |
|
151 |
31 150
|
condan |
|