Metamath Proof Explorer


Theorem 1arithufdlem4

Description: Lemma for 1arithufd . Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b B = Base R
1arithufd.0 0 ˙ = 0 R
1arithufd.u U = Unit R
1arithufd.p P = RPrime R
1arithufd.m M = mulGrp R
1arithufd.r φ R UFD
1arithufdlem.2 φ ¬ R DivRing
1arithufdlem.s S = x B | f Word P x = M f
1arithufdlem.3 φ X B
1arithufdlem.4 φ ¬ X U
1arithufdlem.5 φ X 0 ˙
Assertion 1arithufdlem4 φ X S

Proof

Step Hyp Ref Expression
1 1arithufd.b B = Base R
2 1arithufd.0 0 ˙ = 0 R
3 1arithufd.u U = Unit R
4 1arithufd.p P = RPrime R
5 1arithufd.m M = mulGrp R
6 1arithufd.r φ R UFD
7 1arithufdlem.2 φ ¬ R DivRing
8 1arithufdlem.s S = x B | f Word P x = M f
9 1arithufdlem.3 φ X B
10 1arithufdlem.4 φ ¬ X U
11 1arithufdlem.5 φ X 0 ˙
12 eqeq1 x = a x = M f a = M f
13 12 rexbidv x = a f Word P x = M f f Word P a = M f
14 eqcom a = M f M f = a
15 14 rexbii f Word P a = M f f Word P M f = a
16 13 15 bitrdi x = a f Word P x = M f f Word P M f = a
17 6 adantr φ a P R UFD
18 simpr φ a P a P
19 1 4 17 18 rprmcl φ a P a B
20 oveq2 f = ⟨“ a ”⟩ M f = M ⟨“ a ”⟩
21 20 eqeq1d f = ⟨“ a ”⟩ M f = a M ⟨“ a ”⟩ = a
22 18 s1cld φ a P ⟨“ a ”⟩ Word P
23 5 1 mgpbas B = Base M
24 23 gsumws1 a B M ⟨“ a ”⟩ = a
25 19 24 syl φ a P M ⟨“ a ”⟩ = a
26 21 22 25 rspcedvdw φ a P f Word P M f = a
27 16 19 26 elrabd φ a P a x B | f Word P x = M f
28 27 8 eleqtrrdi φ a P a S
29 28 ex φ a P a S
30 29 ssrdv φ P S
31 30 adantr φ ¬ X S P S
32 anass φ ¬ X S i LIdeal R S i = RSpan R X i φ ¬ X S i LIdeal R S i = RSpan R X i
33 ineq2 p = i S p = S i
34 33 eqeq1d p = i S p = S i =
35 sseq2 p = i RSpan R X p RSpan R X i
36 34 35 anbi12d p = i S p = RSpan R X p S i = RSpan R X i
37 36 elrab i p LIdeal R | S p = RSpan R X p i LIdeal R S i = RSpan R X i
38 37 anbi2i φ ¬ X S i p LIdeal R | S p = RSpan R X p φ ¬ X S i LIdeal R S i = RSpan R X i
39 32 38 bitr4i φ ¬ X S i LIdeal R S i = RSpan R X i φ ¬ X S i p LIdeal R | S p = RSpan R X p
40 39 anbi1i φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R φ ¬ X S i p LIdeal R | S p = RSpan R X p i PrmIdeal R
41 incom i S = S i
42 simpllr φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j S i = RSpan R X i
43 42 simpld φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j S i =
44 41 43 eqtrid φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j i S =
45 6 ad5antr φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j R UFD
46 simplr φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j i PrmIdeal R
47 42 simprd φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j RSpan R X i
48 6 ufdidom φ R IDomn
49 48 idomringd φ R Ring
50 eqid RSpan R = RSpan R
51 1 50 rspsnid R Ring X B X RSpan R X
52 49 9 51 syl2anc φ X RSpan R X
53 52 ad5antr φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j X RSpan R X
54 47 53 sseldd φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j X i
55 nelsn X 0 ˙ ¬ X 0 ˙
56 11 55 syl φ ¬ X 0 ˙
57 56 ad5antr φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j ¬ X 0 ˙
58 nelne1 X i ¬ X 0 ˙ i 0 ˙
59 54 57 58 syl2anc φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j i 0 ˙
60 46 59 eldifsnd φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j i PrmIdeal R 0 ˙
61 ineq1 j = i j P = i P
62 61 neeq1d j = i j P i P
63 eqid PrmIdeal R = PrmIdeal R
64 63 4 2 isufd R UFD R IDomn j PrmIdeal R 0 ˙ j P
65 64 simprbi R UFD j PrmIdeal R 0 ˙ j P
66 65 adantr R UFD i PrmIdeal R 0 ˙ j PrmIdeal R 0 ˙ j P
67 simpr R UFD i PrmIdeal R 0 ˙ i PrmIdeal R 0 ˙
68 62 66 67 rspcdva R UFD i PrmIdeal R 0 ˙ i P
69 45 60 68 syl2anc φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j i P
70 sseq0 i P i S i S = i P =
71 70 expcom i S = i P i S i P =
72 71 necon3ad i S = i P ¬ i P i S
73 sslin P S i P i S
74 73 con3i ¬ i P i S ¬ P S
75 72 74 syl6 i S = i P ¬ P S
76 44 69 75 sylc φ ¬ X S i LIdeal R S i = RSpan R X i i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j ¬ P S
77 40 76 sylanbr φ ¬ X S i p LIdeal R | S p = RSpan R X p i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j ¬ P S
78 77 anasss φ ¬ X S i p LIdeal R | S p = RSpan R X p i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j ¬ P S
79 48 idomcringd φ R CRing
80 79 adantr φ ¬ X S R CRing
81 49 adantr φ ¬ X S R Ring
82 9 adantr φ ¬ X S X B
83 82 snssd φ ¬ X S X B
84 eqid LIdeal R = LIdeal R
85 50 1 84 rspcl R Ring X B RSpan R X LIdeal R
86 81 83 85 syl2anc φ ¬ X S RSpan R X LIdeal R
87 5 ringmgp R Ring M Mnd
88 49 87 syl φ M Mnd
89 8 ssrab3 S B
90 89 a1i φ S B
91 eqeq1 x = 1 R x = M f 1 R = M f
92 91 rexbidv x = 1 R f Word P x = M f f Word P 1 R = M f
93 eqcom 1 R = M f M f = 1 R
94 93 rexbii f Word P 1 R = M f f Word P M f = 1 R
95 92 94 bitrdi x = 1 R f Word P x = M f f Word P M f = 1 R
96 eqid 1 R = 1 R
97 1 96 ringidcl R Ring 1 R B
98 49 97 syl φ 1 R B
99 oveq2 f = M f = M
100 99 eqeq1d f = M f = 1 R M = 1 R
101 wrd0 Word P
102 101 a1i φ Word P
103 5 96 ringidval 1 R = 0 M
104 103 gsum0 M = 1 R
105 104 a1i φ M = 1 R
106 100 102 105 rspcedvdw φ f Word P M f = 1 R
107 95 98 106 elrabd φ 1 R x B | f Word P x = M f
108 107 8 eleqtrrdi φ 1 R S
109 6 ad2antrr φ a S b S R UFD
110 7 ad2antrr φ a S b S ¬ R DivRing
111 eqid R = R
112 simplr φ a S b S a S
113 simpr φ a S b S b S
114 1 2 3 4 5 109 110 8 111 112 113 1arithufdlem2 φ a S b S a R b S
115 114 anasss φ a S b S a R b S
116 115 ralrimivva φ a S b S a R b S
117 5 111 mgpplusg R = + M
118 23 103 117 issubm M Mnd S SubMnd M S B 1 R S a S b S a R b S
119 118 biimpar M Mnd S B 1 R S a S b S a R b S S SubMnd M
120 88 90 108 116 119 syl13anc φ S SubMnd M
121 120 adantr φ ¬ X S S SubMnd M
122 neq0 ¬ S RSpan R X = u u S RSpan R X
123 122 biimpi ¬ S RSpan R X = u u S RSpan R X
124 123 adantl φ ¬ S RSpan R X = u u S RSpan R X
125 6 ad4antr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X R UFD
126 7 ad4antr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X ¬ R DivRing
127 9 ad4antr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X X B
128 10 ad4antr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X ¬ X U
129 11 ad4antr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X X 0 ˙
130 simplr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X y B
131 simpr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X u = y R X
132 simpllr φ ¬ S RSpan R X = u S RSpan R X y B u = y R X u S RSpan R X
133 132 elin1d φ ¬ S RSpan R X = u S RSpan R X y B u = y R X u S
134 131 133 eqeltrrd φ ¬ S RSpan R X = u S RSpan R X y B u = y R X y R X S
135 1 2 3 4 5 125 126 8 127 128 129 111 130 134 1arithufdlem3 φ ¬ S RSpan R X = u S RSpan R X y B u = y R X X S
136 49 ad2antrr φ ¬ S RSpan R X = u S RSpan R X R Ring
137 9 ad2antrr φ ¬ S RSpan R X = u S RSpan R X X B
138 simpr φ ¬ S RSpan R X = u S RSpan R X u S RSpan R X
139 138 elin2d φ ¬ S RSpan R X = u S RSpan R X u RSpan R X
140 1 111 50 elrspsn R Ring X B u RSpan R X y B u = y R X
141 140 biimpa R Ring X B u RSpan R X y B u = y R X
142 136 137 139 141 syl21anc φ ¬ S RSpan R X = u S RSpan R X y B u = y R X
143 135 142 r19.29a φ ¬ S RSpan R X = u S RSpan R X X S
144 124 143 exlimddv φ ¬ S RSpan R X = X S
145 144 adantlr φ ¬ X S ¬ S RSpan R X = X S
146 simplr φ ¬ X S ¬ S RSpan R X = ¬ X S
147 145 146 condan φ ¬ X S S RSpan R X =
148 eqid p LIdeal R | S p = RSpan R X p = p LIdeal R | S p = RSpan R X p
149 1 80 86 121 5 147 148 ssdifidlprm φ ¬ X S i p LIdeal R | S p = RSpan R X p i PrmIdeal R j p LIdeal R | S p = RSpan R X p ¬ i j
150 78 149 r19.29a φ ¬ X S ¬ P S
151 31 150 condan φ X S