Metamath Proof Explorer


Theorem aks4d1p1p4

Description: Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p4.1 φN
aks4d1p1p4.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p1p4.3 B=log2N5
aks4d1p1p4.4 φ3N
aks4d1p1p4.5 C=log2log2N5+1
aks4d1p1p4.6 D=log2N2
aks4d1p1p4.7 E=log2N4
aks4d1p1p4.8 φ2C+DE
Assertion aks4d1p1p4 φA<2B

Proof

Step Hyp Ref Expression
1 aks4d1p1p4.1 φN
2 aks4d1p1p4.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p1p4.3 B=log2N5
4 aks4d1p1p4.4 φ3N
5 aks4d1p1p4.5 C=log2log2N5+1
6 aks4d1p1p4.6 D=log2N2
7 aks4d1p1p4.7 E=log2N4
8 aks4d1p1p4.8 φ2C+DE
9 1 nnred φN
10 2re 2
11 10 a1i φ2
12 2pos 0<2
13 12 a1i φ0<2
14 1 nngt0d φ0<N
15 1red φ1
16 1lt2 1<2
17 16 a1i φ1<2
18 15 17 ltned φ12
19 18 necomd φ21
20 11 13 9 14 19 relogbcld φlog2N
21 5nn0 50
22 21 a1i φ50
23 20 22 reexpcld φlog2N5
24 ceilcl log2N5log2N5
25 23 24 syl φlog2N5
26 25 zred φlog2N5
27 3 a1i φB=log2N5
28 27 eleq1d φBlog2N5
29 26 28 mpbird φB
30 0red φ0
31 7re 7
32 31 a1i φ7
33 7pos 0<7
34 33 a1i φ0<7
35 9 4 3lexlogpow5ineq3 φ7<log2N5
36 32 23 35 ltled φ7log2N5
37 ceilge log2N5log2N5log2N5
38 23 37 syl φlog2N5log2N5
39 38 27 breqtrrd φlog2N5B
40 32 23 29 36 39 letrd φ7B
41 30 32 29 34 40 ltletrd φ0<B
42 11 13 29 41 19 relogbcld φlog2B
43 42 flcld φlog2B
44 30 15 readdcld φ0+1
45 43 zred φlog2B
46 45 15 readdcld φlog2B+1
47 11 13 11 13 19 relogbcld φlog22
48 15 leidd φ11
49 1cnd φ1
50 49 addlidd φ0+1=1
51 11 recnd φ2
52 30 13 gtned φ20
53 logbid1 22021log22=1
54 51 52 19 53 syl3anc φlog22=1
55 54 eqcomd φ1=log22
56 55 eqcomd φlog22=1
57 50 56 breq12d φ0+1log2211
58 48 57 mpbird φ0+1log22
59 5re 5
60 59 a1i φ5
61 11 60 readdcld φ2+5
62 10 21 nn0addge1i 22+5
63 62 a1i φ22+5
64 10 recni 2
65 5cn 5
66 64 65 addcomi 2+5=5+2
67 5p2e7 5+2=7
68 66 67 eqtri 2+5=7
69 68 a1i φ2+5=7
70 32 leidd φ77
71 69 70 eqbrtrd φ2+57
72 11 61 32 63 71 letrd φ27
73 11 32 29 72 40 letrd φ2B
74 2z 2
75 74 a1i φ2
76 75 uzidd φ22
77 2rp 2+
78 77 a1i φ2+
79 29 41 elrpd φB+
80 logbleb 222+B+2Blog22log2B
81 76 78 79 80 syl3anc φ2Blog22log2B
82 73 81 mpbid φlog22log2B
83 44 47 42 58 82 letrd φ0+1log2B
84 fllep1 log2Blog2Blog2B+1
85 42 84 syl φlog2Blog2B+1
86 44 42 46 83 85 letrd φ0+1log2B+1
87 30 45 15 leadd1d φ0log2B0+1log2B+1
88 86 87 mpbird φ0log2B
89 43 88 jca φlog2B0log2B
90 elnn0z log2B0log2B0log2B
91 89 90 sylibr φlog2B0
92 9 91 reexpcld φNlog2B
93 fzfid φ1log2N2Fin
94 9 adantr φk1log2N2N
95 elfznn k1log2N2k
96 95 adantl φk1log2N2k
97 96 nnnn0d φk1log2N2k0
98 94 97 reexpcld φk1log2N2Nk
99 1red φk1log2N21
100 98 99 resubcld φk1log2N2Nk1
101 93 100 fprodrecl φk=1log2N2Nk1
102 92 101 remulcld φNlog2Bk=1log2N2Nk1
103 2 a1i φA=Nlog2Bk=1log2N2Nk1
104 103 eleq1d φANlog2Bk=1log2N2Nk1
105 102 104 mpbird φA
106 7 a1i φE=log2N4
107 106 oveq2d φNE=Nlog2N4
108 2cnd φ2
109 78 rpne0d φ20
110 109 19 nelprd φ¬201
111 108 110 eldifd φ201
112 9 recnd φN
113 30 14 ltned φ0N
114 necom 0NN0
115 114 imbi2i φ0NφN0
116 113 115 mpbi φN0
117 116 neneqd φ¬N=0
118 c0ex 0V
119 118 elsn2 N0N=0
120 117 119 sylnibr φ¬N0
121 112 120 eldifd φN0
122 cxplogb 201N02log2N=N
123 111 121 122 syl2anc φ2log2N=N
124 123 eqcomd φN=2log2N
125 124 oveq1d φNlog2N4=2log2Nlog2N4
126 eqidd φ2log2Nlog2N4=2log2Nlog2N4
127 125 126 eqtrd φNlog2N4=2log2Nlog2N4
128 107 127 eqtrd φNE=2log2Nlog2N4
129 106 eqcomd φlog2N4=E
130 4nn0 40
131 130 a1i φ40
132 20 131 reexpcld φlog2N4
133 106 eleq1d φElog2N4
134 132 133 mpbird φE
135 134 recnd φE
136 129 135 eqeltrd φlog2N4
137 78 20 136 cxpmuld φ2log2Nlog2N4=2log2Nlog2N4
138 137 eqcomd φ2log2Nlog2N4=2log2Nlog2N4
139 128 138 eqtrd φNE=2log2Nlog2N4
140 20 recnd φlog2N
141 140 exp1d φlog2N1=log2N
142 141 eqcomd φlog2N=log2N1
143 142 oveq1d φlog2Nlog2N4=log2N1log2N4
144 1nn0 10
145 144 a1i φ10
146 140 131 145 expaddd φlog2N1+4=log2N1log2N4
147 146 eqcomd φlog2N1log2N4=log2N1+4
148 143 147 eqtrd φlog2Nlog2N4=log2N1+4
149 148 oveq2d φ2log2Nlog2N4=2log2N1+4
150 139 149 eqtrd φNE=2log2N1+4
151 4cn 4
152 ax-1cn 1
153 4p1e5 4+1=5
154 151 152 153 addcomli 1+4=5
155 154 a1i φ1+4=5
156 155 oveq2d φlog2N1+4=log2N5
157 156 oveq2d φ2log2N1+4=2log2N5
158 150 157 eqtrd φNE=2log2N5
159 3re 3
160 159 a1i φ3
161 0le1 01
162 161 a1i φ01
163 1lt3 1<3
164 163 a1i φ1<3
165 15 160 164 ltled φ13
166 30 15 160 162 165 letrd φ03
167 30 160 9 166 4 letrd φ0N
168 9 167 134 recxpcld φNE
169 158 168 eqeltrrd φ2log2N5
170 27 eleq1d φBlog2N5
171 25 170 mpbird φB
172 30 29 41 ltled φ0B
173 171 172 jca φB0B
174 elnn0z B0B0B
175 173 174 sylibr φB0
176 11 175 reexpcld φ2B
177 9 14 elrpd φN+
178 23 15 readdcld φlog2N5+1
179 22 nn0zd φ5
180 logb1 22021log21=0
181 51 52 19 180 syl3anc φlog21=0
182 181 30 eqeltrd φlog21
183 30 leidd φ00
184 181 eqcomd φ0=log21
185 183 184 breqtrd φ0log21
186 15 160 9 164 4 ltletrd φ1<N
187 1rp 1+
188 187 a1i φ1+
189 logblt 221+N+1<Nlog21<log2N
190 76 188 177 189 syl3anc φ1<Nlog21<log2N
191 186 190 mpbid φlog21<log2N
192 30 182 20 185 191 lelttrd φ0<log2N
193 20 179 192 3jca φlog2N50<log2N
194 expgt0 log2N50<log2N0<log2N5
195 193 194 syl φ0<log2N5
196 ltp1 log2N5log2N5<log2N5+1
197 23 196 syl φlog2N5<log2N5+1
198 30 23 178 195 197 lttrd φ0<log2N5+1
199 11 13 178 198 19 relogbcld φlog2log2N5+1
200 5 a1i φC=log2log2N5+1
201 200 eleq1d φClog2log2N5+1
202 199 201 mpbird φC
203 20 resqcld φlog2N2
204 6 a1i φD=log2N2
205 204 eleq1d φDlog2N2
206 203 205 mpbird φD
207 206 rehalfcld φD2
208 202 207 readdcld φC+D2
209 134 11 109 redivcld φE2
210 208 209 readdcld φC+D2+E2
211 177 210 rpcxpcld φNC+D2+E2+
212 211 rpred φNC+D2+E2
213 1 2 3 4 aks4d1p1p2 φA<Nlog2log2N5+1+log2N22+log2N42
214 129 oveq1d φlog2N42=E2
215 214 oveq2d φlog2log2N5+1+log2N22+log2N42=log2log2N5+1+log2N22+E2
216 200 eqcomd φlog2log2N5+1=C
217 216 oveq1d φlog2log2N5+1+log2N22=C+log2N22
218 204 eqcomd φlog2N2=D
219 218 oveq1d φlog2N22=D2
220 219 oveq2d φC+log2N22=C+D2
221 217 220 eqtrd φlog2log2N5+1+log2N22=C+D2
222 221 oveq1d φlog2log2N5+1+log2N22+E2=C+D2+E2
223 215 222 eqtrd φlog2log2N5+1+log2N22+log2N42=C+D2+E2
224 223 oveq2d φNlog2log2N5+1+log2N22+log2N42=NC+D2+E2
225 213 224 breqtrd φA<NC+D2+E2
226 202 recnd φC
227 226 108 109 divcan3d φ2C2=C
228 227 eqcomd φC=2C2
229 228 oveq1d φC+D2=2C2+D2
230 11 202 remulcld φ2C
231 230 recnd φ2C
232 206 recnd φD
233 231 232 51 109 divdird φ2C+D2=2C2+D2
234 233 eqcomd φ2C2+D2=2C+D2
235 229 234 eqtrd φC+D2=2C+D2
236 230 206 readdcld φ2C+D
237 236 134 78 lediv1d φ2C+DE2C+D2E2
238 8 237 mpbid φ2C+D2E2
239 235 238 eqbrtrd φC+D2E2
240 208 209 209 239 leadd1dd φC+D2+E2E2+E2
241 135 2halvesd φE2+E2=E
242 240 241 breqtrd φC+D2+E2E
243 9 186 210 134 cxpled φC+D2+E2ENC+D2+E2NE
244 242 243 mpbid φNC+D2+E2NE
245 105 212 168 225 244 ltletrd φA<NE
246 245 158 breqtrd φA<2log2N5
247 1le2 12
248 247 a1i φ12
249 175 nn0red φB
250 27 eqcomd φlog2N5=B
251 38 250 breqtrd φlog2N5B
252 11 248 23 249 251 cxplead φ2log2N52B
253 cxpexp 2B02B=2B
254 108 175 253 syl2anc φ2B=2B
255 252 254 breqtrd φ2log2N52B
256 105 169 176 246 255 ltletrd φA<2B