Metamath Proof Explorer


Theorem aks4d1p1p6

Description: Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p6.1 φ A
aks4d1p1p6.2 φ B
aks4d1p1p6.3 φ 3 A
aks4d1p1p6.4 φ A B
Assertion aks4d1p1p6 φ dx A B 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x = x A B 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x

Proof

Step Hyp Ref Expression
1 aks4d1p1p6.1 φ A
2 aks4d1p1p6.2 φ B
3 aks4d1p1p6.3 φ 3 A
4 aks4d1p1p6.4 φ A B
5 reelprrecn
6 5 a1i φ
7 2cnd φ x A B 2
8 2re 2
9 8 a1i φ x A B 2
10 2pos 0 < 2
11 10 a1i φ x A B 0 < 2
12 elioore x A B x
13 12 adantl φ x A B x
14 0red φ x A B 0
15 1 adantr φ x A B A
16 3re 3
17 16 a1i φ x A B 3
18 3pos 0 < 3
19 18 a1i φ x A B 0 < 3
20 3 adantr φ x A B 3 A
21 14 17 15 19 20 ltletrd φ x A B 0 < A
22 simpr φ x A B x A B
23 1 rexrd φ A *
24 23 adantr φ x A B A *
25 2 rexrd φ B *
26 25 adantr φ x A B B *
27 13 rexrd φ x A B x *
28 elioo5 A * B * x * x A B A < x x < B
29 24 26 27 28 syl3anc φ x A B x A B A < x x < B
30 22 29 mpbid φ x A B A < x x < B
31 30 simpld φ x A B A < x
32 14 15 13 21 31 lttrd φ x A B 0 < x
33 1red φ x A B 1
34 1lt2 1 < 2
35 34 a1i φ x A B 1 < 2
36 33 35 ltned φ x A B 1 2
37 36 necomd φ x A B 2 1
38 9 11 13 32 37 relogbcld φ x A B log 2 x
39 5nn0 5 0
40 39 a1i φ x A B 5 0
41 38 40 reexpcld φ x A B log 2 x 5
42 41 33 readdcld φ x A B log 2 x 5 + 1
43 14 33 readdcld φ x A B 0 + 1
44 14 ltp1d φ x A B 0 < 0 + 1
45 40 nn0zd φ x A B 5
46 2cnd 2
47 0red 0
48 10 a1i 0 < 2
49 47 48 ltned 0 2
50 49 necomd 2 0
51 1red 1
52 34 a1i 1 < 2
53 51 52 ltned 1 2
54 53 necomd 2 1
55 logb1 2 2 0 2 1 log 2 1 = 0
56 46 50 54 55 syl3anc log 2 1 = 0
57 56 mptru log 2 1 = 0
58 2lt3 2 < 3
59 58 a1i φ x A B 2 < 3
60 33 9 17 35 59 lttrd φ x A B 1 < 3
61 33 17 15 60 20 ltletrd φ x A B 1 < A
62 33 15 13 61 31 lttrd φ x A B 1 < x
63 2z 2
64 63 a1i φ x A B 2
65 64 uzidd φ x A B 2 2
66 1rp 1 +
67 66 a1i φ x A B 1 +
68 13 32 elrpd φ x A B x +
69 logblt 2 2 1 + x + 1 < x log 2 1 < log 2 x
70 65 67 68 69 syl3anc φ x A B 1 < x log 2 1 < log 2 x
71 62 70 mpbid φ x A B log 2 1 < log 2 x
72 57 71 eqbrtrrid φ x A B 0 < log 2 x
73 expgt0 log 2 x 5 0 < log 2 x 0 < log 2 x 5
74 38 45 72 73 syl3anc φ x A B 0 < log 2 x 5
75 14 41 33 74 ltadd1dd φ x A B 0 + 1 < log 2 x 5 + 1
76 14 43 42 44 75 lttrd φ x A B 0 < log 2 x 5 + 1
77 9 11 42 76 37 relogbcld φ x A B log 2 log 2 x 5 + 1
78 recn log 2 log 2 x 5 + 1 log 2 log 2 x 5 + 1
79 77 78 syl φ x A B log 2 log 2 x 5 + 1
80 7 79 mulcld φ x A B 2 log 2 log 2 x 5 + 1
81 2rp 2 +
82 81 a1i φ x A B 2 +
83 82 relogcld φ x A B log 2
84 42 83 remulcld φ x A B log 2 x 5 + 1 log 2
85 41 recnd φ x A B log 2 x 5
86 1cnd φ x A B 1
87 85 86 addcld φ x A B log 2 x 5 + 1
88 11 gt0ne0d φ x A B 2 0
89 7 88 logcld φ x A B log 2
90 76 gt0ne0d φ x A B log 2 x 5 + 1 0
91 0red φ 0
92 loggt0b 2 + 0 < log 2 1 < 2
93 81 92 ax-mp 0 < log 2 1 < 2
94 34 93 mpbir 0 < log 2
95 94 a1i φ 0 < log 2
96 91 95 ltned φ 0 log 2
97 96 necomd φ log 2 0
98 97 adantr φ x A B log 2 0
99 87 89 90 98 mulne0d φ x A B log 2 x 5 + 1 log 2 0
100 33 84 99 redivcld φ x A B 1 log 2 x 5 + 1 log 2
101 5re 5
102 101 a1i φ x A B 5
103 4nn0 4 0
104 103 a1i φ x A B 4 0
105 38 104 reexpcld φ x A B log 2 x 4
106 102 105 remulcld φ x A B 5 log 2 x 4
107 13 83 remulcld φ x A B x log 2
108 13 recnd φ x A B x
109 14 32 gtned φ x A B x 0
110 108 89 109 98 mulne0d φ x A B x log 2 0
111 33 107 110 redivcld φ x A B 1 x log 2
112 106 111 remulcld φ x A B 5 log 2 x 4 1 x log 2
113 112 14 readdcld φ x A B 5 log 2 x 4 1 x log 2 + 0
114 100 113 remulcld φ x A B 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0
115 9 114 remulcld φ x A B 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0
116 42 76 elrpd φ x A B log 2 x 5 + 1 +
117 8 a1i φ y + 2
118 10 a1i φ y + 0 < 2
119 rpre y + y
120 119 adantl φ y + y
121 rpgt0 y + 0 < y
122 121 adantl φ y + 0 < y
123 1red φ y + 1
124 34 a1i φ y + 1 < 2
125 123 124 ltned φ y + 1 2
126 125 necomd φ y + 2 1
127 117 118 120 122 126 relogbcld φ y + log 2 y
128 127 recnd φ y + log 2 y
129 81 a1i φ y + 2 +
130 129 relogcld φ y + log 2
131 120 130 remulcld φ y + y log 2
132 120 recnd φ y + y
133 2cnd φ y + 2
134 129 rpne0d φ y + 2 0
135 133 134 logcld φ y + log 2
136 rpne0 y + y 0
137 136 adantl φ y + y 0
138 97 necomd φ 0 log 2
139 138 adantr φ y + 0 log 2
140 139 necomd φ y + log 2 0
141 132 135 137 140 mulne0d φ y + y log 2 0
142 123 131 141 redivcld φ y + 1 y log 2
143 cnelprrecn
144 143 a1i φ
145 38 recnd φ x A B log 2 x
146 simpr φ z z
147 39 a1i φ z 5 0
148 146 147 expcld φ z z 5
149 5cn 5
150 149 a1i φ z 5
151 103 a1i φ z 4 0
152 146 151 expcld φ z z 4
153 150 152 mulcld φ z 5 z 4
154 16 a1i φ 3
155 18 a1i φ 0 < 3
156 91 154 1 155 3 ltletrd φ 0 < A
157 91 1 156 ltled φ 0 A
158 eqid x A B log 2 x = x A B log 2 x
159 eqid x A B 1 x log 2 = x A B 1 x log 2
160 23 25 157 4 158 159 dvrelog2b φ dx A B log 2 x d x = x A B 1 x log 2
161 5nn 5
162 dvexp 5 dz z 5 d z = z 5 z 5 1
163 161 162 ax-mp dz z 5 d z = z 5 z 5 1
164 5m1e4 5 1 = 4
165 164 a1i φ z 5 1 = 4
166 165 oveq2d φ z z 5 1 = z 4
167 166 oveq2d φ z 5 z 5 1 = 5 z 4
168 167 mpteq2dva φ z 5 z 5 1 = z 5 z 4
169 163 168 syl5eq φ dz z 5 d z = z 5 z 4
170 oveq1 z = log 2 x z 5 = log 2 x 5
171 oveq1 z = log 2 x z 4 = log 2 x 4
172 171 oveq2d z = log 2 x 5 z 4 = 5 log 2 x 4
173 6 144 145 111 148 153 160 169 170 172 dvmptco φ dx A B log 2 x 5 d x = x A B 5 log 2 x 4 1 x log 2
174 1cnd φ 1
175 174 adantr φ x 1
176 0red φ x 0
177 6 174 dvmptc φ dx 1 d x = x 0
178 ioossre A B
179 178 a1i φ A B
180 eqid TopOpen fld = TopOpen fld
181 180 tgioo2 topGen ran . = TopOpen fld 𝑡
182 iooretop A B topGen ran .
183 182 a1i φ A B topGen ran .
184 6 175 176 177 179 181 180 183 dvmptres φ dx A B 1 d x = x A B 0
185 6 85 112 173 86 14 184 dvmptadd φ dx A B log 2 x 5 + 1 d x = x A B 5 log 2 x 4 1 x log 2 + 0
186 dfrp2 + = 0 +∞
187 186 a1i φ + = 0 +∞
188 187 mpteq1d φ y + log 2 y = y 0 +∞ log 2 y
189 188 oveq2d φ dy + log 2 y d y = dy 0 +∞ log 2 y d y
190 91 rexrd φ 0 *
191 pnfxr +∞ *
192 191 a1i φ +∞ *
193 91 leidd φ 0 0
194 0lepnf 0 +∞
195 194 a1i φ 0 +∞
196 eqid y 0 +∞ log 2 y = y 0 +∞ log 2 y
197 eqid y 0 +∞ 1 y log 2 = y 0 +∞ 1 y log 2
198 190 192 193 195 196 197 dvrelog2b φ dy 0 +∞ log 2 y d y = y 0 +∞ 1 y log 2
199 187 eqcomd φ 0 +∞ = +
200 199 mpteq1d φ y 0 +∞ 1 y log 2 = y + 1 y log 2
201 198 200 eqtrd φ dy 0 +∞ log 2 y d y = y + 1 y log 2
202 189 201 eqtrd φ dy + log 2 y d y = y + 1 y log 2
203 oveq2 y = log 2 x 5 + 1 log 2 y = log 2 log 2 x 5 + 1
204 oveq1 y = log 2 x 5 + 1 y log 2 = log 2 x 5 + 1 log 2
205 204 oveq2d y = log 2 x 5 + 1 1 y log 2 = 1 log 2 x 5 + 1 log 2
206 6 6 116 113 128 142 185 202 203 205 dvmptco φ dx A B log 2 log 2 x 5 + 1 d x = x A B 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0
207 8 a1i φ 2
208 207 recnd φ 2
209 6 79 114 206 208 dvmptcmul φ dx A B 2 log 2 log 2 x 5 + 1 d x = x A B 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0
210 145 sqcld φ x A B log 2 x 2
211 83 resqcld φ x A B log 2 2
212 82 rpne0d φ x A B 2 0
213 7 212 logcld φ x A B log 2
214 213 98 64 expne0d φ x A B log 2 2 0
215 9 211 214 redivcld φ x A B 2 log 2 2
216 68 relogcld φ x A B log x
217 2m1e1 2 1 = 1
218 1nn0 1 0
219 217 218 eqeltri 2 1 0
220 219 a1i φ x A B 2 1 0
221 216 220 reexpcld φ x A B log x 2 1
222 68 rpne0d φ x A B x 0
223 221 13 222 redivcld φ x A B log x 2 1 x
224 215 223 remulcld φ x A B 2 log 2 2 log x 2 1 x
225 eqid x A B log 2 x 2 = x A B log 2 x 2
226 eqid x A B 2 log 2 2 log x 2 1 x = x A B 2 log 2 2 log x 2 1 x
227 eqid 2 log 2 2 = 2 log 2 2
228 2nn 2
229 228 a1i φ 2
230 1 2 156 4 225 226 227 229 dvrelogpow2b φ dx A B log 2 x 2 d x = x A B 2 log 2 2 log x 2 1 x
231 6 80 115 209 210 224 230 dvmptadd φ dx A B 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x = x A B 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x