Metamath Proof Explorer


Theorem aks4d1p1p6

Description: Inequality lift to differentiable functions for a term in AKS inequality lemma. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p6.1 φA
aks4d1p1p6.2 φB
aks4d1p1p6.3 φ3A
aks4d1p1p6.4 φAB
Assertion aks4d1p1p6 φdxAB2log2log2x5+1+log2x2dx=xAB21log2x5+1log25log2x41xlog2+0+2log22logx21x

Proof

Step Hyp Ref Expression
1 aks4d1p1p6.1 φA
2 aks4d1p1p6.2 φB
3 aks4d1p1p6.3 φ3A
4 aks4d1p1p6.4 φAB
5 reelprrecn
6 5 a1i φ
7 2cnd φxAB2
8 2re 2
9 8 a1i φxAB2
10 2pos 0<2
11 10 a1i φxAB0<2
12 elioore xABx
13 12 adantl φxABx
14 0red φxAB0
15 1 adantr φxABA
16 3re 3
17 16 a1i φxAB3
18 3pos 0<3
19 18 a1i φxAB0<3
20 3 adantr φxAB3A
21 14 17 15 19 20 ltletrd φxAB0<A
22 simpr φxABxAB
23 1 rexrd φA*
24 23 adantr φxABA*
25 2 rexrd φB*
26 25 adantr φxABB*
27 13 rexrd φxABx*
28 elioo5 A*B*x*xABA<xx<B
29 24 26 27 28 syl3anc φxABxABA<xx<B
30 22 29 mpbid φxABA<xx<B
31 30 simpld φxABA<x
32 14 15 13 21 31 lttrd φxAB0<x
33 1red φxAB1
34 1lt2 1<2
35 34 a1i φxAB1<2
36 33 35 ltned φxAB12
37 36 necomd φxAB21
38 9 11 13 32 37 relogbcld φxABlog2x
39 5nn0 50
40 39 a1i φxAB50
41 38 40 reexpcld φxABlog2x5
42 41 33 readdcld φxABlog2x5+1
43 14 33 readdcld φxAB0+1
44 14 ltp1d φxAB0<0+1
45 40 nn0zd φxAB5
46 2cnd 2
47 0red 0
48 10 a1i 0<2
49 47 48 ltned 02
50 49 necomd 20
51 1red 1
52 34 a1i 1<2
53 51 52 ltned 12
54 53 necomd 21
55 logb1 22021log21=0
56 46 50 54 55 syl3anc log21=0
57 56 mptru log21=0
58 2lt3 2<3
59 58 a1i φxAB2<3
60 33 9 17 35 59 lttrd φxAB1<3
61 33 17 15 60 20 ltletrd φxAB1<A
62 33 15 13 61 31 lttrd φxAB1<x
63 2z 2
64 63 a1i φxAB2
65 64 uzidd φxAB22
66 1rp 1+
67 66 a1i φxAB1+
68 13 32 elrpd φxABx+
69 logblt 221+x+1<xlog21<log2x
70 65 67 68 69 syl3anc φxAB1<xlog21<log2x
71 62 70 mpbid φxABlog21<log2x
72 57 71 eqbrtrrid φxAB0<log2x
73 expgt0 log2x50<log2x0<log2x5
74 38 45 72 73 syl3anc φxAB0<log2x5
75 14 41 33 74 ltadd1dd φxAB0+1<log2x5+1
76 14 43 42 44 75 lttrd φxAB0<log2x5+1
77 9 11 42 76 37 relogbcld φxABlog2log2x5+1
78 recn log2log2x5+1log2log2x5+1
79 77 78 syl φxABlog2log2x5+1
80 7 79 mulcld φxAB2log2log2x5+1
81 2rp 2+
82 81 a1i φxAB2+
83 82 relogcld φxABlog2
84 42 83 remulcld φxABlog2x5+1log2
85 41 recnd φxABlog2x5
86 1cnd φxAB1
87 85 86 addcld φxABlog2x5+1
88 11 gt0ne0d φxAB20
89 7 88 logcld φxABlog2
90 76 gt0ne0d φxABlog2x5+10
91 0red φ0
92 loggt0b 2+0<log21<2
93 81 92 ax-mp 0<log21<2
94 34 93 mpbir 0<log2
95 94 a1i φ0<log2
96 91 95 ltned φ0log2
97 96 necomd φlog20
98 97 adantr φxABlog20
99 87 89 90 98 mulne0d φxABlog2x5+1log20
100 33 84 99 redivcld φxAB1log2x5+1log2
101 5re 5
102 101 a1i φxAB5
103 4nn0 40
104 103 a1i φxAB40
105 38 104 reexpcld φxABlog2x4
106 102 105 remulcld φxAB5log2x4
107 13 83 remulcld φxABxlog2
108 13 recnd φxABx
109 14 32 gtned φxABx0
110 108 89 109 98 mulne0d φxABxlog20
111 33 107 110 redivcld φxAB1xlog2
112 106 111 remulcld φxAB5log2x41xlog2
113 112 14 readdcld φxAB5log2x41xlog2+0
114 100 113 remulcld φxAB1log2x5+1log25log2x41xlog2+0
115 9 114 remulcld φxAB21log2x5+1log25log2x41xlog2+0
116 42 76 elrpd φxABlog2x5+1+
117 8 a1i φy+2
118 10 a1i φy+0<2
119 rpre y+y
120 119 adantl φy+y
121 rpgt0 y+0<y
122 121 adantl φy+0<y
123 1red φy+1
124 34 a1i φy+1<2
125 123 124 ltned φy+12
126 125 necomd φy+21
127 117 118 120 122 126 relogbcld φy+log2y
128 127 recnd φy+log2y
129 81 a1i φy+2+
130 129 relogcld φy+log2
131 120 130 remulcld φy+ylog2
132 120 recnd φy+y
133 2cnd φy+2
134 129 rpne0d φy+20
135 133 134 logcld φy+log2
136 rpne0 y+y0
137 136 adantl φy+y0
138 97 necomd φ0log2
139 138 adantr φy+0log2
140 139 necomd φy+log20
141 132 135 137 140 mulne0d φy+ylog20
142 123 131 141 redivcld φy+1ylog2
143 cnelprrecn
144 143 a1i φ
145 38 recnd φxABlog2x
146 simpr φzz
147 39 a1i φz50
148 146 147 expcld φzz5
149 5cn 5
150 149 a1i φz5
151 103 a1i φz40
152 146 151 expcld φzz4
153 150 152 mulcld φz5z4
154 16 a1i φ3
155 18 a1i φ0<3
156 91 154 1 155 3 ltletrd φ0<A
157 91 1 156 ltled φ0A
158 eqid xABlog2x=xABlog2x
159 eqid xAB1xlog2=xAB1xlog2
160 23 25 157 4 158 159 dvrelog2b φdxABlog2xdx=xAB1xlog2
161 5nn 5
162 dvexp 5dzz5dz=z5z51
163 161 162 ax-mp dzz5dz=z5z51
164 5m1e4 51=4
165 164 a1i φz51=4
166 165 oveq2d φzz51=z4
167 166 oveq2d φz5z51=5z4
168 167 mpteq2dva φz5z51=z5z4
169 163 168 eqtrid φdzz5dz=z5z4
170 oveq1 z=log2xz5=log2x5
171 oveq1 z=log2xz4=log2x4
172 171 oveq2d z=log2x5z4=5log2x4
173 6 144 145 111 148 153 160 169 170 172 dvmptco φdxABlog2x5dx=xAB5log2x41xlog2
174 1cnd φ1
175 174 adantr φx1
176 0red φx0
177 6 174 dvmptc φdx1dx=x0
178 ioossre AB
179 178 a1i φAB
180 eqid TopOpenfld=TopOpenfld
181 180 tgioo2 topGenran.=TopOpenfld𝑡
182 iooretop ABtopGenran.
183 182 a1i φABtopGenran.
184 6 175 176 177 179 181 180 183 dvmptres φdxAB1dx=xAB0
185 6 85 112 173 86 14 184 dvmptadd φdxABlog2x5+1dx=xAB5log2x41xlog2+0
186 dfrp2 +=0+∞
187 186 a1i φ+=0+∞
188 187 mpteq1d φy+log2y=y0+∞log2y
189 188 oveq2d φdy+log2ydy=dy0+∞log2ydy
190 91 rexrd φ0*
191 pnfxr +∞*
192 191 a1i φ+∞*
193 91 leidd φ00
194 0lepnf 0+∞
195 194 a1i φ0+∞
196 eqid y0+∞log2y=y0+∞log2y
197 eqid y0+∞1ylog2=y0+∞1ylog2
198 190 192 193 195 196 197 dvrelog2b φdy0+∞log2ydy=y0+∞1ylog2
199 187 eqcomd φ0+∞=+
200 199 mpteq1d φy0+∞1ylog2=y+1ylog2
201 198 200 eqtrd φdy0+∞log2ydy=y+1ylog2
202 189 201 eqtrd φdy+log2ydy=y+1ylog2
203 oveq2 y=log2x5+1log2y=log2log2x5+1
204 oveq1 y=log2x5+1ylog2=log2x5+1log2
205 204 oveq2d y=log2x5+11ylog2=1log2x5+1log2
206 6 6 116 113 128 142 185 202 203 205 dvmptco φdxABlog2log2x5+1dx=xAB1log2x5+1log25log2x41xlog2+0
207 8 a1i φ2
208 207 recnd φ2
209 6 79 114 206 208 dvmptcmul φdxAB2log2log2x5+1dx=xAB21log2x5+1log25log2x41xlog2+0
210 145 sqcld φxABlog2x2
211 83 resqcld φxABlog22
212 82 rpne0d φxAB20
213 7 212 logcld φxABlog2
214 213 98 64 expne0d φxABlog220
215 9 211 214 redivcld φxAB2log22
216 68 relogcld φxABlogx
217 2m1e1 21=1
218 1nn0 10
219 217 218 eqeltri 210
220 219 a1i φxAB210
221 216 220 reexpcld φxABlogx21
222 68 rpne0d φxABx0
223 221 13 222 redivcld φxABlogx21x
224 215 223 remulcld φxAB2log22logx21x
225 eqid xABlog2x2=xABlog2x2
226 eqid xAB2log22logx21x=xAB2log22logx21x
227 eqid 2log22=2log22
228 2nn 2
229 228 a1i φ2
230 1 2 156 4 225 226 227 229 dvrelogpow2b φdxABlog2x2dx=xAB2log22logx21x
231 6 80 115 209 210 224 230 dvmptadd φdxAB2log2log2x5+1+log2x2dx=xAB21log2x5+1log25log2x41xlog2+0+2log22logx21x