Metamath Proof Explorer


Theorem amgm

Description: Inequality of arithmetic and geometric means. Here ( M gsum F ) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements F ( x ) , x e. A together), and ( CCfld gsum F ) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis amgm.1 M=mulGrpfld
Assertion amgm AFinAF:A0+∞MF1AfldFA

Proof

Step Hyp Ref Expression
1 amgm.1 M=mulGrpfld
2 cnfldbas =Basefld
3 1 2 mgpbas =BaseM
4 cnfld1 1=1fld
5 1 4 ringidval 1=0M
6 cnfldmul ×=fld
7 1 6 mgpplusg ×=+M
8 cncrng fldCRing
9 1 crngmgp fldCRingMCMnd
10 8 9 mp1i AFinAF:A0+∞xAFx=0MCMnd
11 simpl1 AFinAF:A0+∞xAFx=0AFin
12 simpl3 AFinAF:A0+∞xAFx=0F:A0+∞
13 rge0ssre 0+∞
14 ax-resscn
15 13 14 sstri 0+∞
16 fss F:A0+∞0+∞F:A
17 12 15 16 sylancl AFinAF:A0+∞xAFx=0F:A
18 1ex 1V
19 18 a1i AFinAF:A0+∞xAFx=01V
20 17 11 19 fdmfifsupp AFinAF:A0+∞xAFx=0finSupp1F
21 disjdif xAx=
22 21 a1i AFinAF:A0+∞xAFx=0xAx=
23 undif2 xAx=xA
24 simprl AFinAF:A0+∞xAFx=0xA
25 24 snssd AFinAF:A0+∞xAFx=0xA
26 ssequn1 xAxA=A
27 25 26 sylib AFinAF:A0+∞xAFx=0xA=A
28 23 27 eqtr2id AFinAF:A0+∞xAFx=0A=xAx
29 3 5 7 10 11 17 20 22 28 gsumsplit AFinAF:A0+∞xAFx=0MF=MFxMFAx
30 12 25 feqresmpt AFinAF:A0+∞xAFx=0Fx=yxFy
31 30 oveq2d AFinAF:A0+∞xAFx=0MFx=MyxFy
32 cnring fldRing
33 1 ringmgp fldRingMMnd
34 32 33 mp1i AFinAF:A0+∞xAFx=0MMnd
35 17 24 ffvelcdmd AFinAF:A0+∞xAFx=0Fx
36 fveq2 y=xFy=Fx
37 3 36 gsumsn MMndxAFxMyxFy=Fx
38 34 24 35 37 syl3anc AFinAF:A0+∞xAFx=0MyxFy=Fx
39 simprr AFinAF:A0+∞xAFx=0Fx=0
40 31 38 39 3eqtrd AFinAF:A0+∞xAFx=0MFx=0
41 40 oveq1d AFinAF:A0+∞xAFx=0MFxMFAx=0MFAx
42 diffi AFinAxFin
43 11 42 syl AFinAF:A0+∞xAFx=0AxFin
44 difss AxA
45 fssres F:AAxAFAx:Ax
46 17 44 45 sylancl AFinAF:A0+∞xAFx=0FAx:Ax
47 46 43 19 fdmfifsupp AFinAF:A0+∞xAFx=0finSupp1FAx
48 3 5 10 43 46 47 gsumcl AFinAF:A0+∞xAFx=0MFAx
49 48 mul02d AFinAF:A0+∞xAFx=00MFAx=0
50 29 41 49 3eqtrd AFinAF:A0+∞xAFx=0MF=0
51 50 oveq1d AFinAF:A0+∞xAFx=0MF1A=01A
52 simpl2 AFinAF:A0+∞xAFx=0A
53 hashnncl AFinAA
54 11 53 syl AFinAF:A0+∞xAFx=0AA
55 52 54 mpbird AFinAF:A0+∞xAFx=0A
56 55 nncnd AFinAF:A0+∞xAFx=0A
57 55 nnne0d AFinAF:A0+∞xAFx=0A0
58 56 57 reccld AFinAF:A0+∞xAFx=01A
59 56 57 recne0d AFinAF:A0+∞xAFx=01A0
60 58 59 0cxpd AFinAF:A0+∞xAFx=001A=0
61 51 60 eqtrd AFinAF:A0+∞xAFx=0MF1A=0
62 cnfld0 0=0fld
63 ringcmn fldRingfldCMnd
64 32 63 mp1i AFinAF:A0+∞xAFx=0fldCMnd
65 rege0subm 0+∞SubMndfld
66 65 a1i AFinAF:A0+∞xAFx=00+∞SubMndfld
67 c0ex 0V
68 67 a1i AFinAF:A0+∞xAFx=00V
69 12 11 68 fdmfifsupp AFinAF:A0+∞xAFx=0finSupp0F
70 62 64 11 66 12 69 gsumsubmcl AFinAF:A0+∞xAFx=0fldF0+∞
71 elrege0 fldF0+∞fldF0fldF
72 70 71 sylib AFinAF:A0+∞xAFx=0fldF0fldF
73 55 nnred AFinAF:A0+∞xAFx=0A
74 55 nngt0d AFinAF:A0+∞xAFx=00<A
75 divge0 fldF0fldFA0<A0fldFA
76 72 73 74 75 syl12anc AFinAF:A0+∞xAFx=00fldFA
77 61 76 eqbrtrd AFinAF:A0+∞xAFx=0MF1AfldFA
78 77 rexlimdvaa AFinAF:A0+∞xAFx=0MF1AfldFA
79 ralnex xA¬Fx=0¬xAFx=0
80 simpl1 AFinAF:A0+∞xA¬Fx=0AFin
81 simpl2 AFinAF:A0+∞xA¬Fx=0A
82 simpl3 AFinAF:A0+∞xA¬Fx=0F:A0+∞
83 82 ffnd AFinAF:A0+∞xA¬Fx=0FFnA
84 ffvelcdm F:A0+∞xAFx0+∞
85 84 3ad2antl3 AFinAF:A0+∞xAFx0+∞
86 elrege0 Fx0+∞Fx0Fx
87 85 86 sylib AFinAF:A0+∞xAFx0Fx
88 87 simprd AFinAF:A0+∞xA0Fx
89 0re 0
90 87 simpld AFinAF:A0+∞xAFx
91 leloe 0Fx0Fx0<Fx0=Fx
92 89 90 91 sylancr AFinAF:A0+∞xA0Fx0<Fx0=Fx
93 88 92 mpbid AFinAF:A0+∞xA0<Fx0=Fx
94 93 ord AFinAF:A0+∞xA¬0<Fx0=Fx
95 eqcom 0=FxFx=0
96 94 95 imbitrdi AFinAF:A0+∞xA¬0<FxFx=0
97 96 con1d AFinAF:A0+∞xA¬Fx=00<Fx
98 elrp Fx+Fx0<Fx
99 98 baib FxFx+0<Fx
100 90 99 syl AFinAF:A0+∞xAFx+0<Fx
101 97 100 sylibrd AFinAF:A0+∞xA¬Fx=0Fx+
102 101 ralimdva AFinAF:A0+∞xA¬Fx=0xAFx+
103 102 imp AFinAF:A0+∞xA¬Fx=0xAFx+
104 ffnfv F:A+FFnAxAFx+
105 83 103 104 sylanbrc AFinAF:A0+∞xA¬Fx=0F:A+
106 1 80 81 105 amgmlem AFinAF:A0+∞xA¬Fx=0MF1AfldFA
107 106 ex AFinAF:A0+∞xA¬Fx=0MF1AfldFA
108 79 107 biimtrrid AFinAF:A0+∞¬xAFx=0MF1AfldFA
109 78 108 pm2.61d AFinAF:A0+∞MF1AfldFA