| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axcclem.1 |
|
| 2 |
|
axcclem.2 |
|
| 3 |
|
axcclem.3 |
|
| 4 |
|
isfinite2 |
|
| 5 |
1
|
eleq1i |
|
| 6 |
|
undif1 |
|
| 7 |
|
snfi |
|
| 8 |
|
unfi |
|
| 9 |
7 8
|
mpan2 |
|
| 10 |
6 9
|
eqeltrrid |
|
| 11 |
|
ssun1 |
|
| 12 |
|
ssfi |
|
| 13 |
10 11 12
|
sylancl |
|
| 14 |
5 13
|
sylbi |
|
| 15 |
|
dcomex |
|
| 16 |
|
isfiniteg |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
|
sdomnen |
|
| 19 |
17 18
|
sylbi |
|
| 20 |
4 14 19
|
3syl |
|
| 21 |
20
|
con2i |
|
| 22 |
|
sdomentr |
|
| 23 |
22
|
expcom |
|
| 24 |
21 23
|
mtod |
|
| 25 |
|
vex |
|
| 26 |
|
difss |
|
| 27 |
1 26
|
eqsstri |
|
| 28 |
|
ssdomg |
|
| 29 |
25 27 28
|
mp2 |
|
| 30 |
24 29
|
jctil |
|
| 31 |
|
bren2 |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
|
entr |
|
| 34 |
32 33
|
mpancom |
|
| 35 |
|
ensym |
|
| 36 |
|
bren |
|
| 37 |
|
f1of |
|
| 38 |
|
peano1 |
|
| 39 |
|
ffvelcdm |
|
| 40 |
37 38 39
|
sylancl |
|
| 41 |
|
eldifn |
|
| 42 |
41 1
|
eleq2s |
|
| 43 |
|
fvex |
|
| 44 |
43
|
elsn |
|
| 45 |
44
|
notbii |
|
| 46 |
|
neq0 |
|
| 47 |
45 46
|
bitr2i |
|
| 48 |
42 47
|
sylibr |
|
| 49 |
40 48
|
syl |
|
| 50 |
|
elunii |
|
| 51 |
40 50
|
sylan2 |
|
| 52 |
37
|
ffvelcdmda |
|
| 53 |
|
difabs |
|
| 54 |
1
|
difeq1i |
|
| 55 |
53 54 1
|
3eqtr4i |
|
| 56 |
|
pwuni |
|
| 57 |
|
ssdif |
|
| 58 |
56 57
|
ax-mp |
|
| 59 |
55 58
|
eqsstrri |
|
| 60 |
59
|
sseli |
|
| 61 |
60
|
ralrimivw |
|
| 62 |
52 61
|
syl |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
2
|
fmpo |
|
| 65 |
63 64
|
sylib |
|
| 66 |
65
|
adantl |
|
| 67 |
25
|
difexi |
|
| 68 |
1 67
|
eqeltri |
|
| 69 |
68
|
uniex |
|
| 70 |
69
|
axdc4 |
|
| 71 |
51 66 70
|
syl2anc |
|
| 72 |
|
3simpb |
|
| 73 |
72
|
eximi |
|
| 74 |
71 73
|
syl |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
exlimiv |
|
| 77 |
49 76
|
mpcom |
|
| 78 |
|
velsn |
|
| 79 |
78
|
necon3bbii |
|
| 80 |
1
|
eleq2i |
|
| 81 |
|
eldif |
|
| 82 |
80 81
|
sylbbr |
|
| 83 |
79 82
|
sylan2br |
|
| 84 |
|
simpl |
|
| 85 |
|
f1ofo |
|
| 86 |
|
foelrn |
|
| 87 |
85 86
|
sylan |
|
| 88 |
|
suceq |
|
| 89 |
88
|
fveq2d |
|
| 90 |
|
id |
|
| 91 |
|
fveq2 |
|
| 92 |
90 91
|
oveq12d |
|
| 93 |
89 92
|
eleq12d |
|
| 94 |
93
|
rspcv |
|
| 95 |
94
|
3ad2ant3 |
|
| 96 |
95
|
imp |
|
| 97 |
96
|
3adant3 |
|
| 98 |
|
eqcom |
|
| 99 |
|
f1ocnvfv |
|
| 100 |
98 99
|
biimtrid |
|
| 101 |
100
|
3adant1 |
|
| 102 |
101
|
imp |
|
| 103 |
102
|
eqcomd |
|
| 104 |
103
|
3adant2 |
|
| 105 |
|
suceq |
|
| 106 |
104 105
|
syl |
|
| 107 |
106
|
fveq2d |
|
| 108 |
|
simpr |
|
| 109 |
|
ffvelcdm |
|
| 110 |
|
fveq2 |
|
| 111 |
|
eqidd |
|
| 112 |
|
fvex |
|
| 113 |
110 111 2 112
|
ovmpo |
|
| 114 |
108 109 113
|
syl2anc |
|
| 115 |
114
|
3adant2 |
|
| 116 |
115
|
3ad2ant1 |
|
| 117 |
97 107 116
|
3eltr3d |
|
| 118 |
37
|
ffvelcdmda |
|
| 119 |
118
|
3adant1 |
|
| 120 |
119
|
3ad2ant1 |
|
| 121 |
|
eleq1 |
|
| 122 |
121
|
3ad2ant3 |
|
| 123 |
120 122
|
mpbird |
|
| 124 |
|
fveq2 |
|
| 125 |
|
suceq |
|
| 126 |
124 125
|
syl |
|
| 127 |
126
|
fveq2d |
|
| 128 |
|
fvex |
|
| 129 |
127 3 128
|
fvmpt |
|
| 130 |
123 129
|
syl |
|
| 131 |
|
simp3 |
|
| 132 |
117 130 131
|
3eltr4d |
|
| 133 |
132
|
3exp |
|
| 134 |
133
|
com3r |
|
| 135 |
134
|
3expd |
|
| 136 |
135
|
com4r |
|
| 137 |
136
|
rexlimiv |
|
| 138 |
87 137
|
syl |
|
| 139 |
84 138
|
mpid |
|
| 140 |
139
|
impd |
|
| 141 |
140
|
impancom |
|
| 142 |
83 141
|
syl5 |
|
| 143 |
142
|
expd |
|
| 144 |
143
|
ralrimiv |
|
| 145 |
|
fvrn0 |
|
| 146 |
145
|
rgenw |
|
| 147 |
|
eqid |
|
| 148 |
147
|
fmpt |
|
| 149 |
146 148
|
mpbi |
|
| 150 |
|
vex |
|
| 151 |
150
|
rnex |
|
| 152 |
|
p0ex |
|
| 153 |
151 152
|
unex |
|
| 154 |
|
fex2 |
|
| 155 |
149 68 153 154
|
mp3an |
|
| 156 |
3 155
|
eqeltri |
|
| 157 |
|
fveq1 |
|
| 158 |
157
|
eleq1d |
|
| 159 |
158
|
imbi2d |
|
| 160 |
159
|
ralbidv |
|
| 161 |
156 160
|
spcev |
|
| 162 |
144 161
|
syl |
|
| 163 |
77 162
|
exlimddv |
|
| 164 |
163
|
exlimiv |
|
| 165 |
36 164
|
sylbi |
|
| 166 |
34 35 165
|
3syl |
|