Metamath Proof Explorer


Theorem axcclem

Description: Lemma for axcc . (Contributed by Mario Carneiro, 2-Feb-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypotheses axcclem.1 A = x
axcclem.2 F = n ω , y A f n
axcclem.3 G = w A h suc f -1 w
Assertion axcclem x ω g z x z g z z

Proof

Step Hyp Ref Expression
1 axcclem.1 A = x
2 axcclem.2 F = n ω , y A f n
3 axcclem.3 G = w A h suc f -1 w
4 isfinite2 A ω A Fin
5 1 eleq1i A Fin x Fin
6 undif1 x = x
7 snfi Fin
8 unfi x Fin Fin x Fin
9 7 8 mpan2 x Fin x Fin
10 6 9 eqeltrrid x Fin x Fin
11 ssun1 x x
12 ssfi x Fin x x x Fin
13 10 11 12 sylancl x Fin x Fin
14 5 13 sylbi A Fin x Fin
15 dcomex ω V
16 isfiniteg ω V x Fin x ω
17 15 16 ax-mp x Fin x ω
18 sdomnen x ω ¬ x ω
19 17 18 sylbi x Fin ¬ x ω
20 4 14 19 3syl A ω ¬ x ω
21 20 con2i x ω ¬ A ω
22 sdomentr A x x ω A ω
23 22 expcom x ω A x A ω
24 21 23 mtod x ω ¬ A x
25 vex x V
26 difss x x
27 1 26 eqsstri A x
28 ssdomg x V A x A x
29 25 27 28 mp2 A x
30 24 29 jctil x ω A x ¬ A x
31 bren2 A x A x ¬ A x
32 30 31 sylibr x ω A x
33 entr A x x ω A ω
34 32 33 mpancom x ω A ω
35 ensym A ω ω A
36 bren ω A f f : ω 1-1 onto A
37 f1of f : ω 1-1 onto A f : ω A
38 peano1 ω
39 ffvelrn f : ω A ω f A
40 37 38 39 sylancl f : ω 1-1 onto A f A
41 eldifn f x ¬ f
42 41 1 eleq2s f A ¬ f
43 fvex f V
44 43 elsn f f =
45 44 notbii ¬ f ¬ f =
46 neq0 ¬ f = c c f
47 45 46 bitr2i c c f ¬ f
48 42 47 sylibr f A c c f
49 40 48 syl f : ω 1-1 onto A c c f
50 elunii c f f A c A
51 40 50 sylan2 c f f : ω 1-1 onto A c A
52 37 ffvelrnda f : ω 1-1 onto A n ω f n A
53 difabs x = x
54 1 difeq1i A = x
55 53 54 1 3eqtr4i A = A
56 pwuni A 𝒫 A
57 ssdif A 𝒫 A A 𝒫 A
58 56 57 ax-mp A 𝒫 A
59 55 58 eqsstrri A 𝒫 A
60 59 sseli f n A f n 𝒫 A
61 60 ralrimivw f n A y A f n 𝒫 A
62 52 61 syl f : ω 1-1 onto A n ω y A f n 𝒫 A
63 62 ralrimiva f : ω 1-1 onto A n ω y A f n 𝒫 A
64 2 fmpo n ω y A f n 𝒫 A F : ω × A 𝒫 A
65 63 64 sylib f : ω 1-1 onto A F : ω × A 𝒫 A
66 65 adantl c f f : ω 1-1 onto A F : ω × A 𝒫 A
67 25 difexi x V
68 1 67 eqeltri A V
69 68 uniex A V
70 69 axdc4 c A F : ω × A 𝒫 A h h : ω A h = c k ω h suc k k F h k
71 51 66 70 syl2anc c f f : ω 1-1 onto A h h : ω A h = c k ω h suc k k F h k
72 3simpb h : ω A h = c k ω h suc k k F h k h : ω A k ω h suc k k F h k
73 72 eximi h h : ω A h = c k ω h suc k k F h k h h : ω A k ω h suc k k F h k
74 71 73 syl c f f : ω 1-1 onto A h h : ω A k ω h suc k k F h k
75 74 ex c f f : ω 1-1 onto A h h : ω A k ω h suc k k F h k
76 75 exlimiv c c f f : ω 1-1 onto A h h : ω A k ω h suc k k F h k
77 49 76 mpcom f : ω 1-1 onto A h h : ω A k ω h suc k k F h k
78 velsn z z =
79 78 necon3bbii ¬ z z
80 1 eleq2i z A z x
81 eldif z x z x ¬ z
82 80 81 sylbbr z x ¬ z z A
83 79 82 sylan2br z x z z A
84 simpl f : ω 1-1 onto A z A f : ω 1-1 onto A
85 f1ofo f : ω 1-1 onto A f : ω onto A
86 foelrn f : ω onto A z A i ω z = f i
87 85 86 sylan f : ω 1-1 onto A z A i ω z = f i
88 suceq k = i suc k = suc i
89 88 fveq2d k = i h suc k = h suc i
90 id k = i k = i
91 fveq2 k = i h k = h i
92 90 91 oveq12d k = i k F h k = i F h i
93 89 92 eleq12d k = i h suc k k F h k h suc i i F h i
94 93 rspcv i ω k ω h suc k k F h k h suc i i F h i
95 94 3ad2ant3 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k h suc i i F h i
96 95 imp h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k h suc i i F h i
97 96 3adant3 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i h suc i i F h i
98 eqcom z = f i f i = z
99 f1ocnvfv f : ω 1-1 onto A i ω f i = z f -1 z = i
100 98 99 syl5bi f : ω 1-1 onto A i ω z = f i f -1 z = i
101 100 3adant1 h : ω A f : ω 1-1 onto A i ω z = f i f -1 z = i
102 101 imp h : ω A f : ω 1-1 onto A i ω z = f i f -1 z = i
103 102 eqcomd h : ω A f : ω 1-1 onto A i ω z = f i i = f -1 z
104 103 3adant2 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i i = f -1 z
105 suceq i = f -1 z suc i = suc f -1 z
106 104 105 syl h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i suc i = suc f -1 z
107 106 fveq2d h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i h suc i = h suc f -1 z
108 simpr h : ω A i ω i ω
109 ffvelrn h : ω A i ω h i A
110 fveq2 n = i f n = f i
111 eqidd y = h i f i = f i
112 fvex f i V
113 110 111 2 112 ovmpo i ω h i A i F h i = f i
114 108 109 113 syl2anc h : ω A i ω i F h i = f i
115 114 3adant2 h : ω A f : ω 1-1 onto A i ω i F h i = f i
116 115 3ad2ant1 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i i F h i = f i
117 97 107 116 3eltr3d h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i h suc f -1 z f i
118 37 ffvelrnda f : ω 1-1 onto A i ω f i A
119 118 3adant1 h : ω A f : ω 1-1 onto A i ω f i A
120 119 3ad2ant1 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i f i A
121 eleq1 z = f i z A f i A
122 121 3ad2ant3 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i z A f i A
123 120 122 mpbird h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i z A
124 fveq2 w = z f -1 w = f -1 z
125 suceq f -1 w = f -1 z suc f -1 w = suc f -1 z
126 124 125 syl w = z suc f -1 w = suc f -1 z
127 126 fveq2d w = z h suc f -1 w = h suc f -1 z
128 fvex h suc f -1 z V
129 127 3 128 fvmpt z A G z = h suc f -1 z
130 123 129 syl h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i G z = h suc f -1 z
131 simp3 h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i z = f i
132 117 130 131 3eltr4d h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i G z z
133 132 3exp h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k z = f i G z z
134 133 com3r z = f i h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k G z z
135 134 3expd z = f i h : ω A f : ω 1-1 onto A i ω k ω h suc k k F h k G z z
136 135 com4r i ω z = f i h : ω A f : ω 1-1 onto A k ω h suc k k F h k G z z
137 136 rexlimiv i ω z = f i h : ω A f : ω 1-1 onto A k ω h suc k k F h k G z z
138 87 137 syl f : ω 1-1 onto A z A h : ω A f : ω 1-1 onto A k ω h suc k k F h k G z z
139 84 138 mpid f : ω 1-1 onto A z A h : ω A k ω h suc k k F h k G z z
140 139 impd f : ω 1-1 onto A z A h : ω A k ω h suc k k F h k G z z
141 140 impancom f : ω 1-1 onto A h : ω A k ω h suc k k F h k z A G z z
142 83 141 syl5 f : ω 1-1 onto A h : ω A k ω h suc k k F h k z x z G z z
143 142 expd f : ω 1-1 onto A h : ω A k ω h suc k k F h k z x z G z z
144 143 ralrimiv f : ω 1-1 onto A h : ω A k ω h suc k k F h k z x z G z z
145 fvrn0 h suc f -1 w ran h
146 145 rgenw w A h suc f -1 w ran h
147 eqid w A h suc f -1 w = w A h suc f -1 w
148 147 fmpt w A h suc f -1 w ran h w A h suc f -1 w : A ran h
149 146 148 mpbi w A h suc f -1 w : A ran h
150 vex h V
151 150 rnex ran h V
152 p0ex V
153 151 152 unex ran h V
154 fex2 w A h suc f -1 w : A ran h A V ran h V w A h suc f -1 w V
155 149 68 153 154 mp3an w A h suc f -1 w V
156 3 155 eqeltri G V
157 fveq1 g = G g z = G z
158 157 eleq1d g = G g z z G z z
159 158 imbi2d g = G z g z z z G z z
160 159 ralbidv g = G z x z g z z z x z G z z
161 156 160 spcev z x z G z z g z x z g z z
162 144 161 syl f : ω 1-1 onto A h : ω A k ω h suc k k F h k g z x z g z z
163 77 162 exlimddv f : ω 1-1 onto A g z x z g z z
164 163 exlimiv f f : ω 1-1 onto A g z x z g z z
165 36 164 sylbi ω A g z x z g z z
166 34 35 165 3syl x ω g z x z g z z