Metamath Proof Explorer


Theorem axcclem

Description: Lemma for axcc . (Contributed by Mario Carneiro, 2-Feb-2013) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Hypotheses axcclem.1 A=x
axcclem.2 F=nω,yAfn
axcclem.3 G=wAhsucf-1w
Assertion axcclem xωgzxzgzz

Proof

Step Hyp Ref Expression
1 axcclem.1 A=x
2 axcclem.2 F=nω,yAfn
3 axcclem.3 G=wAhsucf-1w
4 isfinite2 AωAFin
5 1 eleq1i AFinxFin
6 undif1 x=x
7 snfi Fin
8 unfi xFinFinxFin
9 7 8 mpan2 xFinxFin
10 6 9 eqeltrrid xFinxFin
11 ssun1 xx
12 ssfi xFinxxxFin
13 10 11 12 sylancl xFinxFin
14 5 13 sylbi AFinxFin
15 dcomex ωV
16 isfiniteg ωVxFinxω
17 15 16 ax-mp xFinxω
18 sdomnen xω¬xω
19 17 18 sylbi xFin¬xω
20 4 14 19 3syl Aω¬xω
21 20 con2i xω¬Aω
22 sdomentr AxxωAω
23 22 expcom xωAxAω
24 21 23 mtod xω¬Ax
25 vex xV
26 difss xx
27 1 26 eqsstri Ax
28 ssdomg xVAxAx
29 25 27 28 mp2 Ax
30 24 29 jctil xωAx¬Ax
31 bren2 AxAx¬Ax
32 30 31 sylibr xωAx
33 entr AxxωAω
34 32 33 mpancom xωAω
35 ensym AωωA
36 bren ωAff:ω1-1 ontoA
37 f1of f:ω1-1 ontoAf:ωA
38 peano1 ω
39 ffvelcdm f:ωAωfA
40 37 38 39 sylancl f:ω1-1 ontoAfA
41 eldifn fx¬f
42 41 1 eleq2s fA¬f
43 fvex fV
44 43 elsn ff=
45 44 notbii ¬f¬f=
46 neq0 ¬f=ccf
47 45 46 bitr2i ccf¬f
48 42 47 sylibr fAccf
49 40 48 syl f:ω1-1 ontoAccf
50 elunii cffAcA
51 40 50 sylan2 cff:ω1-1 ontoAcA
52 37 ffvelcdmda f:ω1-1 ontoAnωfnA
53 difabs x=x
54 1 difeq1i A=x
55 53 54 1 3eqtr4i A=A
56 pwuni A𝒫A
57 ssdif A𝒫AA𝒫A
58 56 57 ax-mp A𝒫A
59 55 58 eqsstrri A𝒫A
60 59 sseli fnAfn𝒫A
61 60 ralrimivw fnAyAfn𝒫A
62 52 61 syl f:ω1-1 ontoAnωyAfn𝒫A
63 62 ralrimiva f:ω1-1 ontoAnωyAfn𝒫A
64 2 fmpo nωyAfn𝒫AF:ω×A𝒫A
65 63 64 sylib f:ω1-1 ontoAF:ω×A𝒫A
66 65 adantl cff:ω1-1 ontoAF:ω×A𝒫A
67 25 difexi xV
68 1 67 eqeltri AV
69 68 uniex AV
70 69 axdc4 cAF:ω×A𝒫Ahh:ωAh=ckωhsuckkFhk
71 51 66 70 syl2anc cff:ω1-1 ontoAhh:ωAh=ckωhsuckkFhk
72 3simpb h:ωAh=ckωhsuckkFhkh:ωAkωhsuckkFhk
73 72 eximi hh:ωAh=ckωhsuckkFhkhh:ωAkωhsuckkFhk
74 71 73 syl cff:ω1-1 ontoAhh:ωAkωhsuckkFhk
75 74 ex cff:ω1-1 ontoAhh:ωAkωhsuckkFhk
76 75 exlimiv ccff:ω1-1 ontoAhh:ωAkωhsuckkFhk
77 49 76 mpcom f:ω1-1 ontoAhh:ωAkωhsuckkFhk
78 velsn zz=
79 78 necon3bbii ¬zz
80 1 eleq2i zAzx
81 eldif zxzx¬z
82 80 81 sylbbr zx¬zzA
83 79 82 sylan2br zxzzA
84 simpl f:ω1-1 ontoAzAf:ω1-1 ontoA
85 f1ofo f:ω1-1 ontoAf:ωontoA
86 foelrn f:ωontoAzAiωz=fi
87 85 86 sylan f:ω1-1 ontoAzAiωz=fi
88 suceq k=isuck=suci
89 88 fveq2d k=ihsuck=hsuci
90 id k=ik=i
91 fveq2 k=ihk=hi
92 90 91 oveq12d k=ikFhk=iFhi
93 89 92 eleq12d k=ihsuckkFhkhsuciiFhi
94 93 rspcv iωkωhsuckkFhkhsuciiFhi
95 94 3ad2ant3 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkhsuciiFhi
96 95 imp h:ωAf:ω1-1 ontoAiωkωhsuckkFhkhsuciiFhi
97 96 3adant3 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fihsuciiFhi
98 eqcom z=fifi=z
99 f1ocnvfv f:ω1-1 ontoAiωfi=zf-1z=i
100 98 99 biimtrid f:ω1-1 ontoAiωz=fif-1z=i
101 100 3adant1 h:ωAf:ω1-1 ontoAiωz=fif-1z=i
102 101 imp h:ωAf:ω1-1 ontoAiωz=fif-1z=i
103 102 eqcomd h:ωAf:ω1-1 ontoAiωz=fii=f-1z
104 103 3adant2 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fii=f-1z
105 suceq i=f-1zsuci=sucf-1z
106 104 105 syl h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fisuci=sucf-1z
107 106 fveq2d h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fihsuci=hsucf-1z
108 simpr h:ωAiωiω
109 ffvelcdm h:ωAiωhiA
110 fveq2 n=ifn=fi
111 eqidd y=hifi=fi
112 fvex fiV
113 110 111 2 112 ovmpo iωhiAiFhi=fi
114 108 109 113 syl2anc h:ωAiωiFhi=fi
115 114 3adant2 h:ωAf:ω1-1 ontoAiωiFhi=fi
116 115 3ad2ant1 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fiiFhi=fi
117 97 107 116 3eltr3d h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fihsucf-1zfi
118 37 ffvelcdmda f:ω1-1 ontoAiωfiA
119 118 3adant1 h:ωAf:ω1-1 ontoAiωfiA
120 119 3ad2ant1 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fifiA
121 eleq1 z=fizAfiA
122 121 3ad2ant3 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fizAfiA
123 120 122 mpbird h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fizA
124 fveq2 w=zf-1w=f-1z
125 suceq f-1w=f-1zsucf-1w=sucf-1z
126 124 125 syl w=zsucf-1w=sucf-1z
127 126 fveq2d w=zhsucf-1w=hsucf-1z
128 fvex hsucf-1zV
129 127 3 128 fvmpt zAGz=hsucf-1z
130 123 129 syl h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fiGz=hsucf-1z
131 simp3 h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fiz=fi
132 117 130 131 3eltr4d h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fiGzz
133 132 3exp h:ωAf:ω1-1 ontoAiωkωhsuckkFhkz=fiGzz
134 133 com3r z=fih:ωAf:ω1-1 ontoAiωkωhsuckkFhkGzz
135 134 3expd z=fih:ωAf:ω1-1 ontoAiωkωhsuckkFhkGzz
136 135 com4r iωz=fih:ωAf:ω1-1 ontoAkωhsuckkFhkGzz
137 136 rexlimiv iωz=fih:ωAf:ω1-1 ontoAkωhsuckkFhkGzz
138 87 137 syl f:ω1-1 ontoAzAh:ωAf:ω1-1 ontoAkωhsuckkFhkGzz
139 84 138 mpid f:ω1-1 ontoAzAh:ωAkωhsuckkFhkGzz
140 139 impd f:ω1-1 ontoAzAh:ωAkωhsuckkFhkGzz
141 140 impancom f:ω1-1 ontoAh:ωAkωhsuckkFhkzAGzz
142 83 141 syl5 f:ω1-1 ontoAh:ωAkωhsuckkFhkzxzGzz
143 142 expd f:ω1-1 ontoAh:ωAkωhsuckkFhkzxzGzz
144 143 ralrimiv f:ω1-1 ontoAh:ωAkωhsuckkFhkzxzGzz
145 fvrn0 hsucf-1wranh
146 145 rgenw wAhsucf-1wranh
147 eqid wAhsucf-1w=wAhsucf-1w
148 147 fmpt wAhsucf-1wranhwAhsucf-1w:Aranh
149 146 148 mpbi wAhsucf-1w:Aranh
150 vex hV
151 150 rnex ranhV
152 p0ex V
153 151 152 unex ranhV
154 fex2 wAhsucf-1w:AranhAVranhVwAhsucf-1wV
155 149 68 153 154 mp3an wAhsucf-1wV
156 3 155 eqeltri GV
157 fveq1 g=Ggz=Gz
158 157 eleq1d g=GgzzGzz
159 158 imbi2d g=GzgzzzGzz
160 159 ralbidv g=GzxzgzzzxzGzz
161 156 160 spcev zxzGzzgzxzgzz
162 144 161 syl f:ω1-1 ontoAh:ωAkωhsuckkFhkgzxzgzz
163 77 162 exlimddv f:ω1-1 ontoAgzxzgzz
164 163 exlimiv ff:ω1-1 ontoAgzxzgzz
165 36 164 sylbi ωAgzxzgzz
166 34 35 165 3syl xωgzxzgzz