Metamath Proof Explorer


Theorem axdc2lem

Description: Lemma for axdc2 . We construct a relation R based on F such that x R y iff y e. ( Fx ) , and show that the "function" described by ax-dc can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses axdc2lem.1 A V
axdc2lem.2 R = x y | x A y F x
axdc2lem.3 G = x ω h x
Assertion axdc2lem A F : A 𝒫 A g g : ω A k ω g suc k F g k

Proof

Step Hyp Ref Expression
1 axdc2lem.1 A V
2 axdc2lem.2 R = x y | x A y F x
3 axdc2lem.3 G = x ω h x
4 2 dmeqi dom R = dom x y | x A y F x
5 19.42v y x A y F x x A y y F x
6 5 abbii x | y x A y F x = x | x A y y F x
7 dmopab dom x y | x A y F x = x | y x A y F x
8 df-rab x A | y y F x = x | x A y y F x
9 6 7 8 3eqtr4i dom x y | x A y F x = x A | y y F x
10 4 9 eqtri dom R = x A | y y F x
11 ffvelcdm F : A 𝒫 A x A F x 𝒫 A
12 eldifsni F x 𝒫 A F x
13 n0 F x y y F x
14 12 13 sylib F x 𝒫 A y y F x
15 11 14 syl F : A 𝒫 A x A y y F x
16 15 ralrimiva F : A 𝒫 A x A y y F x
17 rabid2 A = x A | y y F x x A y y F x
18 16 17 sylibr F : A 𝒫 A A = x A | y y F x
19 10 18 eqtr4id F : A 𝒫 A dom R = A
20 19 neeq1d F : A 𝒫 A dom R A
21 20 biimparc A F : A 𝒫 A dom R
22 2 rneqi ran R = ran x y | x A y F x
23 rnopab ran x y | x A y F x = y | x x A y F x
24 22 23 eqtri ran R = y | x x A y F x
25 eldifi F x 𝒫 A F x 𝒫 A
26 elelpwi y F x F x 𝒫 A y A
27 26 expcom F x 𝒫 A y F x y A
28 11 25 27 3syl F : A 𝒫 A x A y F x y A
29 28 expimpd F : A 𝒫 A x A y F x y A
30 29 exlimdv F : A 𝒫 A x x A y F x y A
31 30 abssdv F : A 𝒫 A y | x x A y F x A
32 24 31 eqsstrid F : A 𝒫 A ran R A
33 32 19 sseqtrrd F : A 𝒫 A ran R dom R
34 33 adantl A F : A 𝒫 A ran R dom R
35 fvrn0 F x ran F
36 elssuni F x ran F F x ran F
37 35 36 ax-mp F x ran F
38 37 sseli y F x y ran F
39 38 anim2i x A y F x x A y ran F
40 39 ssopab2i x y | x A y F x x y | x A y ran F
41 df-xp A × ran F = x y | x A y ran F
42 40 2 41 3sstr4i R A × ran F
43 frn F : A 𝒫 A ran F 𝒫 A
44 43 adantl A F : A 𝒫 A ran F 𝒫 A
45 1 pwex 𝒫 A V
46 45 difexi 𝒫 A V
47 46 ssex ran F 𝒫 A ran F V
48 44 47 syl A F : A 𝒫 A ran F V
49 p0ex V
50 unexg ran F V V ran F V
51 48 49 50 sylancl A F : A 𝒫 A ran F V
52 51 uniexd A F : A 𝒫 A ran F V
53 xpexg A V ran F V A × ran F V
54 1 52 53 sylancr A F : A 𝒫 A A × ran F V
55 ssexg R A × ran F A × ran F V R V
56 42 54 55 sylancr A F : A 𝒫 A R V
57 n0 dom r x x dom r
58 vex x V
59 58 eldm x dom r y x r y
60 59 exbii x x dom r x y x r y
61 57 60 bitr2i x y x r y dom r
62 dmeq r = R dom r = dom R
63 62 neeq1d r = R dom r dom R
64 61 63 bitrid r = R x y x r y dom R
65 rneq r = R ran r = ran R
66 65 62 sseq12d r = R ran r dom r ran R dom R
67 64 66 anbi12d r = R x y x r y ran r dom r dom R ran R dom R
68 breq r = R h k r h suc k h k R h suc k
69 68 ralbidv r = R k ω h k r h suc k k ω h k R h suc k
70 69 exbidv r = R h k ω h k r h suc k h k ω h k R h suc k
71 67 70 imbi12d r = R x y x r y ran r dom r h k ω h k r h suc k dom R ran R dom R h k ω h k R h suc k
72 ax-dc x y x r y ran r dom r h k ω h k r h suc k
73 71 72 vtoclg R V dom R ran R dom R h k ω h k R h suc k
74 56 73 syl A F : A 𝒫 A dom R ran R dom R h k ω h k R h suc k
75 21 34 74 mp2and A F : A 𝒫 A h k ω h k R h suc k
76 simpr A F : A 𝒫 A F : A 𝒫 A
77 fveq2 k = x h k = h x
78 suceq k = x suc k = suc x
79 78 fveq2d k = x h suc k = h suc x
80 77 79 breq12d k = x h k R h suc k h x R h suc x
81 80 rspccv k ω h k R h suc k x ω h x R h suc x
82 fvex h x V
83 fvex h suc x V
84 82 83 breldm h x R h suc x h x dom R
85 81 84 syl6 k ω h k R h suc k x ω h x dom R
86 85 imp k ω h k R h suc k x ω h x dom R
87 86 adantll dom R = A k ω h k R h suc k x ω h x dom R
88 eleq2 dom R = A h x dom R h x A
89 88 ad2antrr dom R = A k ω h k R h suc k x ω h x dom R h x A
90 87 89 mpbid dom R = A k ω h k R h suc k x ω h x A
91 90 3 fmptd dom R = A k ω h k R h suc k G : ω A
92 91 ex dom R = A k ω h k R h suc k G : ω A
93 19 92 syl F : A 𝒫 A k ω h k R h suc k G : ω A
94 93 impcom k ω h k R h suc k F : A 𝒫 A G : ω A
95 fveq2 x = k h x = h k
96 fvex h k V
97 95 3 96 fvmpt k ω G k = h k
98 peano2 k ω suc k ω
99 fvex h suc k V
100 fveq2 x = suc k h x = h suc k
101 100 3 fvmptg suc k ω h suc k V G suc k = h suc k
102 98 99 101 sylancl k ω G suc k = h suc k
103 97 102 breq12d k ω G k R G suc k h k R h suc k
104 fvex G k V
105 fvex G suc k V
106 eleq1 x = G k x A G k A
107 fveq2 x = G k F x = F G k
108 107 eleq2d x = G k y F x y F G k
109 106 108 anbi12d x = G k x A y F x G k A y F G k
110 eleq1 y = G suc k y F G k G suc k F G k
111 110 anbi2d y = G suc k G k A y F G k G k A G suc k F G k
112 104 105 109 111 2 brab G k R G suc k G k A G suc k F G k
113 112 simprbi G k R G suc k G suc k F G k
114 103 113 biimtrrdi k ω h k R h suc k G suc k F G k
115 114 ralimia k ω h k R h suc k k ω G suc k F G k
116 115 adantr k ω h k R h suc k F : A 𝒫 A k ω G suc k F G k
117 fvrn0 h x ran h
118 117 rgenw x ω h x ran h
119 eqid x ω h x = x ω h x
120 119 fmpt x ω h x ran h x ω h x : ω ran h
121 118 120 mpbi x ω h x : ω ran h
122 dcomex ω V
123 vex h V
124 123 rnex ran h V
125 124 49 unex ran h V
126 fex2 x ω h x : ω ran h ω V ran h V x ω h x V
127 121 122 125 126 mp3an x ω h x V
128 3 127 eqeltri G V
129 feq1 g = G g : ω A G : ω A
130 fveq1 g = G g suc k = G suc k
131 fveq1 g = G g k = G k
132 131 fveq2d g = G F g k = F G k
133 130 132 eleq12d g = G g suc k F g k G suc k F G k
134 133 ralbidv g = G k ω g suc k F g k k ω G suc k F G k
135 129 134 anbi12d g = G g : ω A k ω g suc k F g k G : ω A k ω G suc k F G k
136 128 135 spcev G : ω A k ω G suc k F G k g g : ω A k ω g suc k F g k
137 94 116 136 syl2anc k ω h k R h suc k F : A 𝒫 A g g : ω A k ω g suc k F g k
138 137 ex k ω h k R h suc k F : A 𝒫 A g g : ω A k ω g suc k F g k
139 138 exlimiv h k ω h k R h suc k F : A 𝒫 A g g : ω A k ω g suc k F g k
140 75 76 139 sylc A F : A 𝒫 A g g : ω A k ω g suc k F g k