Metamath Proof Explorer


Theorem axdc2lem

Description: Lemma for axdc2 . We construct a relation R based on F such that x R y iff y e. ( Fx ) , and show that the "function" described by ax-dc can be restricted so that it is a real function (since the stated properties only show that it is the superset of a function). (Contributed by Mario Carneiro, 25-Jan-2013) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses axdc2lem.1 AV
axdc2lem.2 R=xy|xAyFx
axdc2lem.3 G=xωhx
Assertion axdc2lem AF:A𝒫Agg:ωAkωgsuckFgk

Proof

Step Hyp Ref Expression
1 axdc2lem.1 AV
2 axdc2lem.2 R=xy|xAyFx
3 axdc2lem.3 G=xωhx
4 2 dmeqi domR=domxy|xAyFx
5 19.42v yxAyFxxAyyFx
6 5 abbii x|yxAyFx=x|xAyyFx
7 dmopab domxy|xAyFx=x|yxAyFx
8 df-rab xA|yyFx=x|xAyyFx
9 6 7 8 3eqtr4i domxy|xAyFx=xA|yyFx
10 4 9 eqtri domR=xA|yyFx
11 ffvelcdm F:A𝒫AxAFx𝒫A
12 eldifsni Fx𝒫AFx
13 n0 FxyyFx
14 12 13 sylib Fx𝒫AyyFx
15 11 14 syl F:A𝒫AxAyyFx
16 15 ralrimiva F:A𝒫AxAyyFx
17 rabid2 A=xA|yyFxxAyyFx
18 16 17 sylibr F:A𝒫AA=xA|yyFx
19 10 18 eqtr4id F:A𝒫AdomR=A
20 19 neeq1d F:A𝒫AdomRA
21 20 biimparc AF:A𝒫AdomR
22 eldifi Fx𝒫AFx𝒫A
23 elelpwi yFxFx𝒫AyA
24 23 expcom Fx𝒫AyFxyA
25 11 22 24 3syl F:A𝒫AxAyFxyA
26 25 expimpd F:A𝒫AxAyFxyA
27 26 exlimdv F:A𝒫AxxAyFxyA
28 27 alrimiv F:A𝒫AyxxAyFxyA
29 2 rneqi ranR=ranxy|xAyFx
30 rnopab ranxy|xAyFx=y|xxAyFx
31 29 30 eqtri ranR=y|xxAyFx
32 31 sseq1i ranRAy|xxAyFxA
33 abss y|xxAyFxAyxxAyFxyA
34 32 33 bitri ranRAyxxAyFxyA
35 28 34 sylibr F:A𝒫AranRA
36 35 19 sseqtrrd F:A𝒫AranRdomR
37 36 adantl AF:A𝒫AranRdomR
38 fvrn0 FxranF
39 elssuni FxranFFxranF
40 38 39 ax-mp FxranF
41 40 sseli yFxyranF
42 41 anim2i xAyFxxAyranF
43 42 ssopab2i xy|xAyFxxy|xAyranF
44 df-xp A×ranF=xy|xAyranF
45 43 2 44 3sstr4i RA×ranF
46 frn F:A𝒫AranF𝒫A
47 46 adantl AF:A𝒫AranF𝒫A
48 1 pwex 𝒫AV
49 48 difexi 𝒫AV
50 49 ssex ranF𝒫AranFV
51 47 50 syl AF:A𝒫AranFV
52 p0ex V
53 unexg ranFVVranFV
54 51 52 53 sylancl AF:A𝒫AranFV
55 54 uniexd AF:A𝒫AranFV
56 xpexg AVranFVA×ranFV
57 1 55 56 sylancr AF:A𝒫AA×ranFV
58 ssexg RA×ranFA×ranFVRV
59 45 57 58 sylancr AF:A𝒫ARV
60 n0 domrxxdomr
61 vex xV
62 61 eldm xdomryxry
63 62 exbii xxdomrxyxry
64 60 63 bitr2i xyxrydomr
65 dmeq r=Rdomr=domR
66 65 neeq1d r=RdomrdomR
67 64 66 bitrid r=RxyxrydomR
68 rneq r=Rranr=ranR
69 68 65 sseq12d r=RranrdomrranRdomR
70 67 69 anbi12d r=RxyxryranrdomrdomRranRdomR
71 breq r=RhkrhsuckhkRhsuck
72 71 ralbidv r=RkωhkrhsuckkωhkRhsuck
73 72 exbidv r=RhkωhkrhsuckhkωhkRhsuck
74 70 73 imbi12d r=RxyxryranrdomrhkωhkrhsuckdomRranRdomRhkωhkRhsuck
75 ax-dc xyxryranrdomrhkωhkrhsuck
76 74 75 vtoclg RVdomRranRdomRhkωhkRhsuck
77 59 76 syl AF:A𝒫AdomRranRdomRhkωhkRhsuck
78 21 37 77 mp2and AF:A𝒫AhkωhkRhsuck
79 simpr AF:A𝒫AF:A𝒫A
80 fveq2 k=xhk=hx
81 suceq k=xsuck=sucx
82 81 fveq2d k=xhsuck=hsucx
83 80 82 breq12d k=xhkRhsuckhxRhsucx
84 83 rspccv kωhkRhsuckxωhxRhsucx
85 fvex hxV
86 fvex hsucxV
87 85 86 breldm hxRhsucxhxdomR
88 84 87 syl6 kωhkRhsuckxωhxdomR
89 88 imp kωhkRhsuckxωhxdomR
90 89 adantll domR=AkωhkRhsuckxωhxdomR
91 eleq2 domR=AhxdomRhxA
92 91 ad2antrr domR=AkωhkRhsuckxωhxdomRhxA
93 90 92 mpbid domR=AkωhkRhsuckxωhxA
94 93 3 fmptd domR=AkωhkRhsuckG:ωA
95 94 ex domR=AkωhkRhsuckG:ωA
96 19 95 syl F:A𝒫AkωhkRhsuckG:ωA
97 96 impcom kωhkRhsuckF:A𝒫AG:ωA
98 fveq2 x=khx=hk
99 fvex hkV
100 98 3 99 fvmpt kωGk=hk
101 peano2 kωsuckω
102 fvex hsuckV
103 fveq2 x=suckhx=hsuck
104 103 3 fvmptg suckωhsuckVGsuck=hsuck
105 101 102 104 sylancl kωGsuck=hsuck
106 100 105 breq12d kωGkRGsuckhkRhsuck
107 fvex GkV
108 fvex GsuckV
109 eleq1 x=GkxAGkA
110 fveq2 x=GkFx=FGk
111 110 eleq2d x=GkyFxyFGk
112 109 111 anbi12d x=GkxAyFxGkAyFGk
113 eleq1 y=GsuckyFGkGsuckFGk
114 113 anbi2d y=GsuckGkAyFGkGkAGsuckFGk
115 107 108 112 114 2 brab GkRGsuckGkAGsuckFGk
116 115 simprbi GkRGsuckGsuckFGk
117 106 116 syl6bir kωhkRhsuckGsuckFGk
118 117 ralimia kωhkRhsuckkωGsuckFGk
119 118 adantr kωhkRhsuckF:A𝒫AkωGsuckFGk
120 fvrn0 hxranh
121 120 rgenw xωhxranh
122 eqid xωhx=xωhx
123 122 fmpt xωhxranhxωhx:ωranh
124 121 123 mpbi xωhx:ωranh
125 dcomex ωV
126 vex hV
127 126 rnex ranhV
128 127 52 unex ranhV
129 fex2 xωhx:ωranhωVranhVxωhxV
130 124 125 128 129 mp3an xωhxV
131 3 130 eqeltri GV
132 feq1 g=Gg:ωAG:ωA
133 fveq1 g=Ggsuck=Gsuck
134 fveq1 g=Ggk=Gk
135 134 fveq2d g=GFgk=FGk
136 133 135 eleq12d g=GgsuckFgkGsuckFGk
137 136 ralbidv g=GkωgsuckFgkkωGsuckFGk
138 132 137 anbi12d g=Gg:ωAkωgsuckFgkG:ωAkωGsuckFGk
139 131 138 spcev G:ωAkωGsuckFGkgg:ωAkωgsuckFgk
140 97 119 139 syl2anc kωhkRhsuckF:A𝒫Agg:ωAkωgsuckFgk
141 140 ex kωhkRhsuckF:A𝒫Agg:ωAkωgsuckFgk
142 141 exlimiv hkωhkRhsuckF:A𝒫Agg:ωAkωgsuckFgk
143 78 79 142 sylc AF:A𝒫Agg:ωAkωgsuckFgk