Metamath Proof Explorer


Theorem bgoldbtbnd

Description: If the binary Goldbach conjecture is valid up to an integer N , and there is a series ("ladder") of primes with a difference of at most N up to an integer M , then the strong ternary Goldbach conjecture is valid up to M , see section 1.2.2 in Helfgott p. 4 with N = 4 x 10^18, taken from OeSilva, and M = 8.875 x 10^30. (Contributed by AV, 1-Aug-2020)

Ref Expression
Hypotheses bgoldbtbnd.m φM11
bgoldbtbnd.n φN11
bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
bgoldbtbnd.d φD3
bgoldbtbnd.f φFRePartD
bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
bgoldbtbnd.0 φF0=7
bgoldbtbnd.1 φF1=13
bgoldbtbnd.l φM<FD
bgoldbtbnd.r φFD
Assertion bgoldbtbnd φnOdd7<nn<MnGoldbachOdd

Proof

Step Hyp Ref Expression
1 bgoldbtbnd.m φM11
2 bgoldbtbnd.n φN11
3 bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
4 bgoldbtbnd.d φD3
5 bgoldbtbnd.f φFRePartD
6 bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
7 bgoldbtbnd.0 φF0=7
8 bgoldbtbnd.1 φF1=13
9 bgoldbtbnd.l φM<FD
10 bgoldbtbnd.r φFD
11 simprl φnOdd7<nn<MnOdd
12 eluzge3nn D3D
13 4 12 syl φD
14 iccelpart DfRePartDnf0fDj0..^Dnfjfj+1
15 13 14 syl φfRePartDnf0fDj0..^Dnfjfj+1
16 fveq1 f=Ff0=F0
17 fveq1 f=FfD=FD
18 16 17 oveq12d f=Ff0fD=F0FD
19 18 eleq2d f=Fnf0fDnF0FD
20 fveq1 f=Ffj=Fj
21 fveq1 f=Ffj+1=Fj+1
22 20 21 oveq12d f=Ffjfj+1=FjFj+1
23 22 eleq2d f=Fnfjfj+1nFjFj+1
24 23 rexbidv f=Fj0..^Dnfjfj+1j0..^DnFjFj+1
25 19 24 imbi12d f=Fnf0fDj0..^Dnfjfj+1nF0FDj0..^DnFjFj+1
26 25 rspcv FRePartDfRePartDnf0fDj0..^Dnfjfj+1nF0FDj0..^DnFjFj+1
27 5 26 syl φfRePartDnf0fDj0..^Dnfjfj+1nF0FDj0..^DnFjFj+1
28 oddz nOddn
29 28 zred nOddn
30 29 rexrd nOddn*
31 30 ad2antrl φnOdd7<nn<Mn*
32 7re 7
33 ltle 7n7<n7n
34 32 29 33 sylancr nOdd7<n7n
35 34 com12 7<nnOdd7n
36 35 adantr 7<nn<MnOdd7n
37 36 impcom nOdd7<nn<M7n
38 37 adantl φnOdd7<nn<M7n
39 eluzelre M11M
40 39 rexrd M11M*
41 1 40 syl φM*
42 41 adantr φnOdd7<nn<MM*
43 10 rexrd φFD*
44 43 adantr φnOdd7<nn<MFD*
45 simprrr φnOdd7<nn<Mn<M
46 9 adantr φnOdd7<nn<MM<FD
47 31 42 44 45 46 xrlttrd φnOdd7<nn<Mn<FD
48 7 oveq1d φF0FD=7FD
49 48 eleq2d φnF0FDn7FD
50 49 adantr φnOdd7<nn<MnF0FDn7FD
51 32 rexri 7*
52 elico1 7*FD*n7FDn*7nn<FD
53 51 44 52 sylancr φnOdd7<nn<Mn7FDn*7nn<FD
54 50 53 bitrd φnOdd7<nn<MnF0FDn*7nn<FD
55 31 38 47 54 mpbir3and φnOdd7<nn<MnF0FD
56 fzo0sn0fzo1 D0..^D=01..^D
57 56 eleq2d Dj0..^Dj01..^D
58 elun j01..^Dj0j1..^D
59 57 58 bitrdi Dj0..^Dj0j1..^D
60 13 59 syl φj0..^Dj0j1..^D
61 60 adantr φnOdd7<nn<Mj0..^Dj0j1..^D
62 velsn j0j=0
63 fveq2 j=0Fj=F0
64 fv0p1e1 j=0Fj+1=F1
65 63 64 oveq12d j=0FjFj+1=F0F1
66 7 8 oveq12d φF0F1=713
67 66 adantr φnOdd7<nn<MF0F1=713
68 65 67 sylan9eq j=0φnOdd7<nn<MFjFj+1=713
69 68 eleq2d j=0φnOdd7<nn<MnFjFj+1n713
70 11 adantr φnOdd7<nn<Mn713nOdd
71 simprrl φnOdd7<nn<M7<n
72 71 adantr φnOdd7<nn<Mn7137<n
73 simpr φnOdd7<nn<Mn713n713
74 bgoldbtbndlem1 nOdd7<nn713nGoldbachOdd
75 70 72 73 74 syl3anc φnOdd7<nn<Mn713nGoldbachOdd
76 isgbo nGoldbachOddnOddpqrpOddqOddrOddn=p+q+r
77 75 76 sylib φnOdd7<nn<Mn713nOddpqrpOddqOddrOddn=p+q+r
78 77 simprd φnOdd7<nn<Mn713pqrpOddqOddrOddn=p+q+r
79 78 ex φnOdd7<nn<Mn713pqrpOddqOddrOddn=p+q+r
80 79 adantl j=0φnOdd7<nn<Mn713pqrpOddqOddrOddn=p+q+r
81 69 80 sylbid j=0φnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
82 81 ex j=0φnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
83 62 82 sylbi j0φnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
84 fzo0ss1 1..^D0..^D
85 84 sseli j1..^Dj0..^D
86 fveq2 i=jFi=Fj
87 86 eleq1d i=jFi2Fj2
88 fvoveq1 i=jFi+1=Fj+1
89 88 86 oveq12d i=jFi+1Fi=Fj+1Fj
90 89 breq1d i=jFi+1Fi<N4Fj+1Fj<N4
91 89 breq2d i=j4<Fi+1Fi4<Fj+1Fj
92 87 90 91 3anbi123d i=jFi2Fi+1Fi<N44<Fi+1FiFj2Fj+1Fj<N44<Fj+1Fj
93 92 rspcv j0..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFj2Fj+1Fj<N44<Fj+1Fj
94 85 93 syl j1..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFj2Fj+1Fj<N44<Fj+1Fj
95 6 94 mpan9 φj1..^DFj2Fj+1Fj<N44<Fj+1Fj
96 1 2 3 4 5 6 7 8 9 10 bgoldbtbndlem4 φj1..^DnOddnFjFj+1nFj4pqrpOddqOddrOddn=p+q+r
97 96 ad2ant2r φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjFj+1nFj4pqrpOddqOddrOddn=p+q+r
98 97 expcomd φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFj4nFjFj+1pqrpOddqOddrOddn=p+q+r
99 simplll φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mφ
100 simprl φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnOdd
101 simpllr φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mj1..^D
102 eqid nFj=nFj
103 1 2 3 4 5 6 7 8 9 10 102 bgoldbtbndlem3 φnOddj1..^DnFjFj+14<nFjnFjEvennFj<N4<nFj
104 99 100 101 103 syl3anc φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjFj+14<nFjnFjEvennFj<N4<nFj
105 breq2 n=m4<n4<m
106 breq1 n=mn<Nm<N
107 105 106 anbi12d n=m4<nn<N4<mm<N
108 eleq1 n=mnGoldbachEvenmGoldbachEven
109 107 108 imbi12d n=m4<nn<NnGoldbachEven4<mm<NmGoldbachEven
110 109 cbvralvw nEven4<nn<NnGoldbachEvenmEven4<mm<NmGoldbachEven
111 breq2 m=nFj4<m4<nFj
112 breq1 m=nFjm<NnFj<N
113 111 112 anbi12d m=nFj4<mm<N4<nFjnFj<N
114 eleq1 m=nFjmGoldbachEvennFjGoldbachEven
115 113 114 imbi12d m=nFj4<mm<NmGoldbachEven4<nFjnFj<NnFjGoldbachEven
116 115 rspcv nFjEvenmEven4<mm<NmGoldbachEven4<nFjnFj<NnFjGoldbachEven
117 110 116 biimtrid nFjEvennEven4<nn<NnGoldbachEven4<nFjnFj<NnFjGoldbachEven
118 pm3.35 4<nFjnFj<N4<nFjnFj<NnFjGoldbachEvennFjGoldbachEven
119 isgbe nFjGoldbachEvennFjEvenpqpOddqOddnFj=p+q
120 eldifi Fj2Fj
121 120 3ad2ant1 Fj2Fj+1Fj<N44<Fj+1FjFj
122 121 adantl j1..^DFj2Fj+1Fj<N44<Fj+1FjFj
123 122 ad5antlr nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qFj
124 eleq1 r=FjrOddFjOdd
125 124 3anbi3d r=FjpOddqOddrOddpOddqOddFjOdd
126 oveq2 r=Fjp+q+r=p+q+Fj
127 126 eqeq2d r=Fjn=p+q+rn=p+q+Fj
128 125 127 anbi12d r=FjpOddqOddrOddn=p+q+rpOddqOddFjOddn=p+q+Fj
129 128 adantl nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qr=FjpOddqOddrOddn=p+q+rpOddqOddFjOddn=p+q+Fj
130 oddprmALTV Fj2FjOdd
131 130 3ad2ant1 Fj2Fj+1Fj<N44<Fj+1FjFjOdd
132 131 adantl j1..^DFj2Fj+1Fj<N44<Fj+1FjFjOdd
133 132 ad4antlr nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqFjOdd
134 3simpa pOddqOddnFj=p+qpOddqOdd
135 133 134 anim12ci nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qpOddqOddFjOdd
136 df-3an pOddqOddFjOddpOddqOddFjOdd
137 135 136 sylibr nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qpOddqOddFjOdd
138 28 zcnd nOddn
139 138 ad2antrl nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mn
140 prmz FjFj
141 140 zcnd FjFj
142 120 141 syl Fj2Fj
143 142 3ad2ant1 Fj2Fj+1Fj<N44<Fj+1FjFj
144 143 adantl j1..^DFj2Fj+1Fj<N44<Fj+1FjFj
145 144 ad2antlr nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MFj
146 139 145 npcand nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mn-Fj+Fj=n
147 146 adantr nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mpn-Fj+Fj=n
148 147 ad2antrl pOddqOddnFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mpqn-Fj+Fj=n
149 oveq1 nFj=p+qn-Fj+Fj=p+q+Fj
150 148 149 sylan9req pOddqOddnFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqnFj=p+qn=p+q+Fj
151 150 exp31 pOddqOddnFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqnFj=p+qn=p+q+Fj
152 151 com23 pOddqOddnFj=p+qnFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mpqn=p+q+Fj
153 152 3impia pOddqOddnFj=p+qnFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mpqn=p+q+Fj
154 153 impcom nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qn=p+q+Fj
155 137 154 jca nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qpOddqOddFjOddn=p+q+Fj
156 123 129 155 rspcedvd nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qrpOddqOddrOddn=p+q+r
157 156 ex nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qrpOddqOddrOddn=p+q+r
158 157 reximdva nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qqrpOddqOddrOddn=p+q+r
159 158 reximdva nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qpqrpOddqOddrOddn=p+q+r
160 159 exp41 nFjEvenφj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MpqpOddqOddnFj=p+qpqrpOddqOddrOddn=p+q+r
161 160 com25 nFjEvenpqpOddqOddnFj=p+qj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
162 161 imp nFjEvenpqpOddqOddnFj=p+qj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
163 119 162 sylbi nFjGoldbachEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
164 163 a1d nFjGoldbachEvennFjEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
165 118 164 syl 4<nFjnFj<N4<nFjnFj<NnFjGoldbachEvennFjEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
166 165 ex 4<nFjnFj<N4<nFjnFj<NnFjGoldbachEvennFjEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
167 166 ancoms nFj<N4<nFj4<nFjnFj<NnFjGoldbachEvennFjEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
168 167 com13 nFjEven4<nFjnFj<NnFjGoldbachEvennFj<N4<nFjj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
169 117 168 syld nFjEvennEven4<nn<NnGoldbachEvennFj<N4<nFjj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
170 169 com23 nFjEvennFj<N4<nFjnEven4<nn<NnGoldbachEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
171 170 3impib nFjEvennFj<N4<nFjnEven4<nn<NnGoldbachEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MφpqrpOddqOddrOddn=p+q+r
172 171 com15 φnEven4<nn<NnGoldbachEvenj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjEvennFj<N4<nFjpqrpOddqOddrOddn=p+q+r
173 3 172 mpd φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjEvennFj<N4<nFjpqrpOddqOddrOddn=p+q+r
174 173 impl φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjEvennFj<N4<nFjpqrpOddqOddrOddn=p+q+r
175 174 imp φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjEvennFj<N4<nFjpqrpOddqOddrOddn=p+q+r
176 104 175 syld φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjFj+14<nFjpqrpOddqOddrOddn=p+q+r
177 176 expcomd φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<M4<nFjnFjFj+1pqrpOddqOddrOddn=p+q+r
178 29 ad2antrl φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<Mn
179 140 zred FjFj
180 120 179 syl Fj2Fj
181 180 3ad2ant1 Fj2Fj+1Fj<N44<Fj+1FjFj
182 181 ad2antlr φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MFj
183 178 182 resubcld φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFj
184 4re 4
185 lelttric nFj4nFj44<nFj
186 183 184 185 sylancl φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFj44<nFj
187 98 177 186 mpjaod φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
188 187 ex φj1..^DFj2Fj+1Fj<N44<Fj+1FjnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
189 95 188 mpdan φj1..^DnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
190 189 expcom j1..^DφnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
191 190 impd j1..^DφnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
192 83 191 jaoi j0j1..^DφnOdd7<nn<MnFjFj+1pqrpOddqOddrOddn=p+q+r
193 192 com12 φnOdd7<nn<Mj0j1..^DnFjFj+1pqrpOddqOddrOddn=p+q+r
194 61 193 sylbid φnOdd7<nn<Mj0..^DnFjFj+1pqrpOddqOddrOddn=p+q+r
195 194 rexlimdv φnOdd7<nn<Mj0..^DnFjFj+1pqrpOddqOddrOddn=p+q+r
196 55 195 embantd φnOdd7<nn<MnF0FDj0..^DnFjFj+1pqrpOddqOddrOddn=p+q+r
197 196 ex φnOdd7<nn<MnF0FDj0..^DnFjFj+1pqrpOddqOddrOddn=p+q+r
198 197 com23 φnF0FDj0..^DnFjFj+1nOdd7<nn<MpqrpOddqOddrOddn=p+q+r
199 27 198 syld φfRePartDnf0fDj0..^Dnfjfj+1nOdd7<nn<MpqrpOddqOddrOddn=p+q+r
200 15 199 mpd φnOdd7<nn<MpqrpOddqOddrOddn=p+q+r
201 200 imp φnOdd7<nn<MpqrpOddqOddrOddn=p+q+r
202 11 201 jca φnOdd7<nn<MnOddpqrpOddqOddrOddn=p+q+r
203 202 76 sylibr φnOdd7<nn<MnGoldbachOdd
204 203 exp32 φnOdd7<nn<MnGoldbachOdd
205 204 ralrimiv φnOdd7<nn<MnGoldbachOdd