Metamath Proof Explorer


Theorem chebbnd1lem3

Description: Lemma for chebbnd1 : get a lower bound on ppi ( N ) / ( N / log ( N ) ) that is independent of N . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypothesis chebbnd1lem2.1 M=N2
Assertion chebbnd1lem3 N8Nlog212e2<π_NlogNN

Proof

Step Hyp Ref Expression
1 chebbnd1lem2.1 M=N2
2 2rp 2+
3 relogcl 2+log2
4 2 3 ax-mp log2
5 1re 1
6 2re 2
7 ere e
8 6 7 remulcli 2e
9 2pos 0<2
10 epos 0<e
11 6 7 9 10 mulgt0ii 0<2e
12 8 11 gt0ne0ii 2e0
13 5 8 12 redivcli 12e
14 4 13 resubcli log212e
15 2ne0 20
16 14 6 15 redivcli log212e2
17 16 a1i N8Nlog212e2
18 6 a1i N8N2
19 8re 8
20 19 a1i N8N8
21 simpl N8NN
22 2lt8 2<8
23 6 19 22 ltleii 28
24 23 a1i N8N28
25 simpr N8N8N
26 18 20 21 24 25 letrd N8N2N
27 ppinncl N2Nπ_N
28 26 27 syldan N8Nπ_N
29 28 nnred N8Nπ_N
30 rehalfcl NN2
31 30 adantr N8NN2
32 31 flcld N8NN2
33 1 32 eqeltrid N8NM
34 33 zred N8NM
35 remulcl 2M2 M
36 6 34 35 sylancr N8N2 M
37 5 a1i N8N1
38 1lt2 1<2
39 38 a1i N8N1<2
40 2t1e2 21=2
41 4nn 4
42 4z 4
43 42 a1i N8N4
44 4t2e8 42=8
45 44 25 eqbrtrid N8N42N
46 4re 4
47 46 a1i N8N4
48 9 a1i N8N0<2
49 lemuldiv 4N20<242N4N2
50 47 21 18 48 49 syl112anc N8N42N4N2
51 45 50 mpbid N8N4N2
52 flge N244N24N2
53 31 42 52 sylancl N8N4N24N2
54 51 53 mpbid N8N4N2
55 54 1 breqtrrdi N8N4M
56 eluz2 M44M4M
57 43 33 55 56 syl3anbrc N8NM4
58 eluznn 4M4M
59 41 57 58 sylancr N8NM
60 59 nnge1d N8N1M
61 lemul2 1M20<21M212 M
62 37 34 18 48 61 syl112anc N8N1M212 M
63 60 62 mpbid N8N212 M
64 40 63 eqbrtrrid N8N22 M
65 37 18 36 39 64 ltletrd N8N1<2 M
66 36 65 rplogcld N8Nlog2 M+
67 66 rpred N8Nlog2 M
68 2nn 2
69 nnmulcl 2M2 M
70 68 59 69 sylancr N8N2 M
71 67 70 nndivred N8Nlog2 M2 M
72 29 71 remulcld N8Nπ_Nlog2 M2 M
73 rehalfcl π_Nlog2 M2 Mπ_Nlog2 M2 M2
74 72 73 syl N8Nπ_Nlog2 M2 M2
75 0red N8N0
76 8pos 0<8
77 76 a1i N8N0<8
78 75 20 21 77 25 ltletrd N8N0<N
79 21 78 elrpd N8NN+
80 79 relogcld N8NlogN
81 80 79 rerpdivcld N8NlogNN
82 29 81 remulcld N8Nπ_NlogNN
83 14 a1i N8Nlog212e
84 ppinncl 2 M22 Mπ_2 M
85 36 64 84 syl2anc N8Nπ_2 M
86 85 nnred N8Nπ_2 M
87 86 71 remulcld N8Nπ_2 Mlog2 M2 M
88 remulcl log212e2 Mlog212e2 M
89 14 36 88 sylancr N8Nlog212e2 M
90 4pos 0<4
91 46 90 elrpii 4+
92 rpexpcl 4+M4M+
93 91 33 92 sylancr N8N4M+
94 59 nnrpd N8NM+
95 93 94 rpdivcld N8N4MM+
96 95 relogcld N8Nlog4MM
97 86 67 remulcld N8Nπ_2 Mlog2 M
98 94 relogcld N8NlogM
99 epr e+
100 rerpdivcl Me+Me
101 34 99 100 sylancl N8NMe
102 93 relogcld N8Nlog4M
103 7 a1i N8Ne
104 egt2lt3 2<ee<3
105 104 simpri e<3
106 3lt4 3<4
107 3re 3
108 7 107 46 lttri e<33<4e<4
109 105 106 108 mp2an e<4
110 109 a1i N8Ne<4
111 103 47 34 110 55 ltletrd N8Ne<M
112 103 34 111 ltled N8NeM
113 7 leidi ee
114 logdivlt eeeMeMe<MlogMM<logee
115 7 113 114 mpanl12 MeMe<MlogMM<logee
116 34 112 115 syl2anc N8Ne<MlogMM<logee
117 111 116 mpbid N8NlogMM<logee
118 loge loge=1
119 118 oveq1i logee=1e
120 117 119 breqtrdi N8NlogMM<1e
121 7 10 pm3.2i e0<e
122 121 a1i N8Ne0<e
123 59 nngt0d N8N0<M
124 34 123 jca N8NM0<M
125 lt2mul2div logMe0<e1M0<MlogMe<1 MlogMM<1e
126 98 122 37 124 125 syl22anc N8NlogMe<1 MlogMM<1e
127 120 126 mpbird N8NlogMe<1 M
128 34 recnd N8NM
129 128 mullidd N8N1 M=M
130 127 129 breqtrd N8NlogMe<M
131 ltmuldiv logMMe0<elogMe<MlogM<Me
132 98 34 122 131 syl3anc N8NlogMe<MlogM<Me
133 130 132 mpbid N8NlogM<Me
134 98 101 102 133 ltsub2dd N8Nlog4MMe<log4MlogM
135 4 recni log2
136 135 a1i N8Nlog2
137 13 recni 12e
138 137 a1i N8N12e
139 70 nnrpd N8N2 M+
140 139 rpcnd N8N2 M
141 136 138 140 subdird N8Nlog212e2 M=log22 M12e2 M
142 136 140 mulcomd N8Nlog22 M=2 Mlog2
143 2z 2
144 zmulcl 2M2 M
145 143 33 144 sylancr N8N2 M
146 relogexp 2+2 Mlog22 M=2 Mlog2
147 2 145 146 sylancr N8Nlog22 M=2 Mlog2
148 2cnd N8N2
149 59 nnnn0d N8NM0
150 2nn0 20
151 150 a1i N8N20
152 148 149 151 expmuld N8N22 M=22M
153 sq2 22=4
154 153 oveq1i 22M=4M
155 152 154 eqtrdi N8N22 M=4M
156 155 fveq2d N8Nlog22 M=log4M
157 142 147 156 3eqtr2d N8Nlog22 M=log4M
158 8 recni 2e
159 158 a1i N8N2e
160 12 a1i N8N2e0
161 140 159 160 divrec2d N8N2 M2e=12e2 M
162 7 recni e
163 162 a1i N8Ne
164 7 10 gt0ne0ii e0
165 164 a1i N8Ne0
166 15 a1i N8N20
167 128 163 148 165 166 divcan5d N8N2 M2e=Me
168 161 167 eqtr3d N8N12e2 M=Me
169 157 168 oveq12d N8Nlog22 M12e2 M=log4MMe
170 141 169 eqtrd N8Nlog212e2 M=log4MMe
171 93 94 relogdivd N8Nlog4MM=log4MlogM
172 134 170 171 3brtr4d N8Nlog212e2 M<log4MM
173 eqid if2 M(2 MM)2 M(2 MM)=if2 M(2 MM)2 M(2 MM)
174 173 chebbnd1lem1 M4log4MM<π_2 Mlog2 M
175 57 174 syl N8Nlog4MM<π_2 Mlog2 M
176 89 96 97 172 175 lttrd N8Nlog212e2 M<π_2 Mlog2 M
177 83 97 139 ltmuldivd N8Nlog212e2 M<π_2 Mlog2 Mlog212e<π_2 Mlog2 M2 M
178 176 177 mpbid N8Nlog212e<π_2 Mlog2 M2 M
179 86 recnd N8Nπ_2 M
180 66 rpcnd N8Nlog2 M
181 139 rpcnne0d N8N2 M2 M0
182 divass π_2 Mlog2 M2 M2 M0π_2 Mlog2 M2 M=π_2 Mlog2 M2 M
183 179 180 181 182 syl3anc N8Nπ_2 Mlog2 M2 M=π_2 Mlog2 M2 M
184 178 183 breqtrd N8Nlog212e<π_2 Mlog2 M2 M
185 flle N2N2N2
186 31 185 syl N8NN2N2
187 1 186 eqbrtrid N8NMN2
188 lemuldiv2 MN20<22 MNMN2
189 34 21 18 48 188 syl112anc N8N2 MNMN2
190 187 189 mpbird N8N2 MN
191 ppiwordi 2 MN2 MNπ_2 Mπ_N
192 36 21 190 191 syl3anc N8Nπ_2 Mπ_N
193 66 139 rpdivcld N8Nlog2 M2 M+
194 86 29 193 lemul1d N8Nπ_2 Mπ_Nπ_2 Mlog2 M2 Mπ_Nlog2 M2 M
195 192 194 mpbid N8Nπ_2 Mlog2 M2 Mπ_Nlog2 M2 M
196 83 87 72 184 195 ltletrd N8Nlog212e<π_Nlog2 M2 M
197 ltdiv1 log212eπ_Nlog2 M2 M20<2log212e<π_Nlog2 M2 Mlog212e2<π_Nlog2 M2 M2
198 83 72 18 48 197 syl112anc N8Nlog212e<π_Nlog2 M2 Mlog212e2<π_Nlog2 M2 M2
199 196 198 mpbid N8Nlog212e2<π_Nlog2 M2 M2
200 1 chebbnd1lem2 N8Nlog2 M2 M<2logNN
201 remulcl 2logNN2logNN
202 6 81 201 sylancr N8N2logNN
203 28 nngt0d N8N0<π_N
204 ltmul2 log2 M2 M2logNNπ_N0<π_Nlog2 M2 M<2logNNπ_Nlog2 M2 M<π_N2logNN
205 71 202 29 203 204 syl112anc N8Nlog2 M2 M<2logNNπ_Nlog2 M2 M<π_N2logNN
206 200 205 mpbid N8Nπ_Nlog2 M2 M<π_N2logNN
207 29 recnd N8Nπ_N
208 81 recnd N8NlogNN
209 207 148 208 mul12d N8Nπ_N2logNN=2π_NlogNN
210 206 209 breqtrd N8Nπ_Nlog2 M2 M<2π_NlogNN
211 ltdivmul π_Nlog2 M2 Mπ_NlogNN20<2π_Nlog2 M2 M2<π_NlogNNπ_Nlog2 M2 M<2π_NlogNN
212 72 82 18 48 211 syl112anc N8Nπ_Nlog2 M2 M2<π_NlogNNπ_Nlog2 M2 M<2π_NlogNN
213 210 212 mpbird N8Nπ_Nlog2 M2 M2<π_NlogNN
214 17 74 82 199 213 lttrd N8Nlog212e2<π_NlogNN