Metamath Proof Explorer


Theorem chfacfpmmulgsum2

Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A=NMatR
cayhamlem1.b B=BaseA
cayhamlem1.p P=Poly1R
cayhamlem1.y Y=NMatP
cayhamlem1.r ×˙=Y
cayhamlem1.s -˙=-Y
cayhamlem1.0 0˙=0Y
cayhamlem1.t T=NmatToPolyMatR
cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cayhamlem1.e ×˙=mulGrpY
chfacfpmmulgsum.p +˙=+Y
Assertion chfacfpmmulgsum2 NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A=NMatR
2 cayhamlem1.b B=BaseA
3 cayhamlem1.p P=Poly1R
4 cayhamlem1.y Y=NMatP
5 cayhamlem1.r ×˙=Y
6 cayhamlem1.s -˙=-Y
7 cayhamlem1.0 0˙=0Y
8 cayhamlem1.t T=NmatToPolyMatR
9 cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 cayhamlem1.e ×˙=mulGrpY
11 chfacfpmmulgsum.p +˙=+Y
12 1 2 3 4 5 6 7 8 9 10 11 chfacfpmmulgsum NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0
13 eqid BaseY=BaseY
14 crngring RCRingRRing
15 14 anim2i NFinRCRingNFinRRing
16 3 4 pmatring NFinRRingYRing
17 15 16 syl NFinRCRingYRing
18 17 3adant3 NFinRCRingMBYRing
19 18 ad2antrr NFinRCRingMBsbB0si1sYRing
20 eqid mulGrpY=mulGrpY
21 20 ringmgp YRingmulGrpYMnd
22 mndmgm mulGrpYMndmulGrpYMgm
23 21 22 syl YRingmulGrpYMgm
24 18 23 syl NFinRCRingMBmulGrpYMgm
25 24 ad2antrr NFinRCRingMBsbB0si1smulGrpYMgm
26 elfznn i1si
27 26 adantl NFinRCRingMBsbB0si1si
28 8 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
29 14 28 syl3an2 NFinRCRingMBTMBaseY
30 29 ad2antrr NFinRCRingMBsbB0si1sTMBaseY
31 20 13 mgpbas BaseY=BasemulGrpY
32 31 10 mulgnncl mulGrpYMgmiTMBaseYi×˙TMBaseY
33 25 27 30 32 syl3anc NFinRCRingMBsbB0si1si×˙TMBaseY
34 15 3adant3 NFinRCRingMBNFinRRing
35 34 ad2antrr NFinRCRingMBsbB0si1sNFinRRing
36 elmapi bB0sb:0sB
37 36 adantl sbB0sb:0sB
38 37 adantl NFinRCRingMBsbB0sb:0sB
39 38 adantr NFinRCRingMBsbB0si1sb:0sB
40 1nn0 10
41 40 a1i si1s10
42 nnnn0 ss0
43 42 adantr si1ss0
44 nnge1 s1s
45 44 adantr si1s1s
46 elfz2nn0 10s10s01s
47 41 43 45 46 syl3anbrc si1s10s
48 simpr si1si1s
49 fz0fzdiffz0 10si1si10s
50 47 48 49 syl2anc si1si10s
51 50 ex si1si10s
52 51 ad2antrl NFinRCRingMBsbB0si1si10s
53 52 imp NFinRCRingMBsbB0si1si10s
54 39 53 ffvelcdmd NFinRCRingMBsbB0si1sbi1B
55 df-3an NFinRRingbi1BNFinRRingbi1B
56 35 54 55 sylanbrc NFinRCRingMBsbB0si1sNFinRRingbi1B
57 8 1 2 3 4 mat2pmatbas NFinRRingbi1BTbi1BaseY
58 56 57 syl NFinRCRingMBsbB0si1sTbi1BaseY
59 34 16 syl NFinRCRingMBYRing
60 59 ad2antrr NFinRCRingMBsbB0si1sYRing
61 simpl1 NFinRCRingMBsbB0sNFin
62 14 3ad2ant2 NFinRCRingMBRRing
63 62 adantr NFinRCRingMBsbB0sRRing
64 42 ad2antrl NFinRCRingMBsbB0ss0
65 61 63 64 3jca NFinRCRingMBsbB0sNFinRRings0
66 65 adantr NFinRCRingMBsbB0si1sNFinRRings0
67 simpr sbB0sbB0s
68 67 adantl NFinRCRingMBsbB0sbB0s
69 fz1ssfz0 1s0s
70 69 sseli i1si0s
71 68 70 anim12i NFinRCRingMBsbB0si1sbB0si0s
72 1 2 3 4 8 m2pmfzmap NFinRRings0bB0si0sTbiBaseY
73 66 71 72 syl2anc NFinRCRingMBsbB0si1sTbiBaseY
74 13 5 ringcl YRingTMBaseYTbiBaseYTM×˙TbiBaseY
75 60 30 73 74 syl3anc NFinRCRingMBsbB0si1sTM×˙TbiBaseY
76 13 5 6 19 33 58 75 ringsubdi NFinRCRingMBsbB0si1si×˙TM×˙Tbi1-˙TM×˙Tbi=i×˙TM×˙Tbi1-˙i×˙TM×˙TM×˙Tbi
77 13 5 ringass YRingi×˙TMBaseYTMBaseYTbiBaseYi×˙TM×˙TM×˙Tbi=i×˙TM×˙TM×˙Tbi
78 60 33 30 73 77 syl13anc NFinRCRingMBsbB0si1si×˙TM×˙TM×˙Tbi=i×˙TM×˙TM×˙Tbi
79 78 eqcomd NFinRCRingMBsbB0si1si×˙TM×˙TM×˙Tbi=i×˙TM×˙TM×˙Tbi
80 29 31 eleqtrdi NFinRCRingMBTMBasemulGrpY
81 80 adantr NFinRCRingMBsbB0sTMBasemulGrpY
82 eqid BasemulGrpY=BasemulGrpY
83 eqid +mulGrpY=+mulGrpY
84 82 10 83 mulgnnp1 iTMBasemulGrpYi+1×˙TM=i×˙TM+mulGrpYTM
85 26 81 84 syl2anr NFinRCRingMBsbB0si1si+1×˙TM=i×˙TM+mulGrpYTM
86 20 5 mgpplusg ×˙=+mulGrpY
87 86 eqcomi +mulGrpY=×˙
88 87 a1i NFinRCRingMBsbB0si1s+mulGrpY=×˙
89 88 oveqd NFinRCRingMBsbB0si1si×˙TM+mulGrpYTM=i×˙TM×˙TM
90 85 89 eqtrd NFinRCRingMBsbB0si1si+1×˙TM=i×˙TM×˙TM
91 90 eqcomd NFinRCRingMBsbB0si1si×˙TM×˙TM=i+1×˙TM
92 91 oveq1d NFinRCRingMBsbB0si1si×˙TM×˙TM×˙Tbi=i+1×˙TM×˙Tbi
93 79 92 eqtrd NFinRCRingMBsbB0si1si×˙TM×˙TM×˙Tbi=i+1×˙TM×˙Tbi
94 93 oveq2d NFinRCRingMBsbB0si1si×˙TM×˙Tbi1-˙i×˙TM×˙TM×˙Tbi=i×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi
95 76 94 eqtrd NFinRCRingMBsbB0si1si×˙TM×˙Tbi1-˙TM×˙Tbi=i×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi
96 95 mpteq2dva NFinRCRingMBsbB0si1si×˙TM×˙Tbi1-˙TM×˙Tbi=i1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi
97 96 oveq2d NFinRCRingMBsbB0sYi=1si×˙TM×˙Tbi1-˙TM×˙Tbi=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi
98 97 oveq1d NFinRCRingMBsbB0sYi=1si×˙TM×˙Tbi1-˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0
99 12 98 eqtrd NFinRCRingMBsbB0sYi0i×˙TM×˙Gi=Yi=1si×˙TM×˙Tbi1-˙i+1×˙TM×˙Tbi+˙s+1×˙TM×˙Tbs-˙TM×˙Tb0